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ABSTRACT

This paper discusses some of the recent theoretical developments in growth theory, tying
them to the earlier growth theories.  We do this by setting out a basic generic model and show how it
yields two of the key models that have played a prominent role in the recent literature on economic
growth theory, the endogenous growth model and the non-scale growth model.  We focus initially on
the former, emphasizing how the simplest such model leads to an equilibrium in which the economy
is always on its balanced growth path.  We have also show how the endogeneity or otherwise of the
labor supply is important in determining the equilibrium growth rate and the responsiveness of the
equilibrium growth rate to macroeconomic policy.

But transitional dynamics are an important aspect of the growth process we discuss
alternative ways that they may be introduced.  Within the endogenous growth framework this occurs
naturally through the introduction of a second capital stock and two such examples are considered.
The first is the introduction of government capital in the one sector model, and the second is the two-
sector production model, in which the two capital goods relate to physical and human capital.

Criticisms of the endogenous growth model have led to the development of the non-scale
model.  This is always characterized by transitional dynamics that are more flexible than those of the
corresponding endogenous growth model.  The model is closer in structure to the traditional
neoclassical model, which in fact is an early example.

Sorting through the growth literature over the last half century, one sees striking parallels
between the old and the new.  The structures have many similarities; it is the methods of analysis
that are changing.  The AK technology of the basic one-sector endogenous growth model is identical
to that of the Harrod-Domar model.  Furthermore, the equilibrium rate of growth in the AK model
can be expressed as the product of the savings rate and the output capital ratio, and is identical to
Harrod’s warranted growth rate.  Moroever, the rigidities that were associated with the Harrod-
Domar technology, and led to the development of the Solow-Swan neoclassical model, have their
parallels in the more recent literature.
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1. Introduction

1.1 Some Background

Long-run growth was first introduced by Solow (1956) and Swan (1956) into the traditional

neoclassical macroeconomic model by considering a growing population coupled with a more

efficient labor force.  The direct consequence of this approach is that the long-run growth rate in

these models is ultimately tied to demographic factors, such as the growth rate of population, the

structure of the labor force, and its productivity growth, all of which were typically taken to be

exogenously determined.  Hence, the only policies that could contribute to long-run growth were

those that would increase the growth of population or the efficiency of the labor force.  Conventional

macroeconomic policy had no influence on long-run growth performance.

Since then, growth theory has evolved into a voluminous literature, in two distinct phases.

The Solow-Swan model was the inspiration for a first generation of growth models during the 1960s,

which, being associated with exogenous sources of long-run growth, are now sometimes referred to

as exogenous growth models.  Research interest in these models tapered off around 1970, as

economists turned their attention to other issues, perceived as being of more immediate significance,

such as inflation, unemployment, and oil shocks, and the design of macroeconomic policies to deal

with them.1  Beginning with the seminal work of Romer (1986), there has been a resurgence of

interest in economic growth theory giving rise to a second generation of growth models.  This

revival of activity has been motivated by several issues.  These include: (i) an attempt to explain

aspects of the data not addressed by the neoclassical model; (ii) a more satisfactory explanation of

international differences in economic growth rates; (iii) a more central role for the accumulation of

knowledge; and (iv) a larger role for the instruments of macroeconomic policy in explaining the

long-run growth process; see Romer (1994).  These new models seek to explain the growth rate as an

endogenous equilibrium outcome of the behavior of rational optimizing agents, reflecting the

structural characteristics of the economy, such as technology and preferences, as well as

macroeconomic policy.  For this reason they have become known as endogenous growth models.

                                                  
1 A comprehensive treatment of the early growth theory through 1970 is provided by Burmeister and Dobell (1970).
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The new growth theory is far-ranging.  It has been analyzed in both closed economies, as

well as in open economies.  In fact, one of the characteristics of the new growth theory is that it has

more of an international orientation; see e.g. Grossman and Helpman (1991).  This may reflect the

increased importance of the international aspects in macroeconomics in general.  In comparison with

the first generation of growth models, the newer literature places a greater emphasis on empirical

issues and the reconciliation of the theory with the empirical evidence.  In this respect a widely

debated issue concerns the so-called convergence hypothesis.  The question here is whether or not

countries have a tendency to converge to a common per capita level of income.

But new growth theory is also associated with important theoretical advances as well, and

one can identify two main strands of theoretical literature, emphasizing different sources of

economic growth.   One class of models, closest to the neoclassical growth model, stresses the

accumulation of private capital as the fundamental source of economic growth.  This differs in a

fundamental way from the neoclassical growth model in that it does not require exogenous elements,

such as a growing population to generate an equilibrium of ongoing growth.  Rather, the equilibrium

growth rate is an internally generated outcome.

In the simplest such model, in which the only factor of production is capital, the constant

returns to scale condition implies that the production function must be linear in physical capital,

being of the functional form Y = AK .  For obvious reasons, this technology has become known as

the "AK model".  As a matter of historical record, explanation of growth as an endogenous process

in a one-sector model is not new.  In fact it dates back to Harrod (1939) and Domar (1946).  The

equilibrium growth rate characterizing the AK model is essentially of the Harrod-Domar type, the

only difference being that consumption (or savings) behavior is derived as part of an intertemporal

optimization, rather than being posited directly.  These one-sector models assume (often only

implicitly) a broad interpretation for capital, taking it to include both human, as well as nonhuman,

capital; see Rebelo (1991).  A direct extension to this basic model are two-sector investment based

growth models, originally due to Lucas (1988), that disaggregate private capital into human and

nonhuman capital; see also Mulligan and Sala-i-Martin (1993) and Bond, Wang, and Yip (1996).

A second class of models, emphasizes the endogenous development of knowledge, or
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research and development, as the engine of growth.  The basic contribution here is that of Romer

(1990), which develops a two-sector model of a closed economy, where new knowledge produced in

one sector is used as an input in the production of final output.  The knowledge sector has been

extended in various directions by a number of authors; see e.g. Aghion and Howitt (1992) and more

recently, Eicher (1996, among others).  A related class of models deals with innovation and the

diffusion of knowledge across countries; see Barro and Sala-i-Martin (1995, Chapter 8).

Despite its attractive features -- chiefly the role it gives to macro policy as a determinant of

long-run growth -- the endogenous growth model is characterized by two aspects, both of which

have been the source of empirical and theoretical criticism.  First, both classes of models are often

characterized by having “scale effects”, meaning that variations in the size or scale of the economy,

as measured by say population, affect the size of the long-run growth rate.  For example, the Romer

(1990) model of research and development implies that a doubling of the population devoted to

research will double the growth rate.  Whether the AK model is associated with scale effects

depends upon whether there are production externalities that are linked to the size of the economy;

see Barro and Sala-i-Martin (1995).

However, empirical evidence does not support the presence of scale effects.  For example,

OECD data suggest that variations in the level of research employment have exerted no influence on

the long-run growth rates of the OECD economies, in contrast to the predictions of the Romer

(1990) model; see Jones (1995b).  In addition, the systematic empirical analysis of Backus, Kehoe,

and Kehoe (1992) finds no conclusive evidence of a relation between U.S. GDP growth and

measures of scale.  Moreover, Easterly and Rebelo (1993) and Stokey and Rebelo (1995) find at best

weak evidence for the effects of tax rates on the long-run rate of growth, although Kneller, Bleaney,

and Gemmell (1999) argue that these results are biased because of the incomplete specification of

the government budget constraint.

The second limitation of recent endogenous growth models is the requirement that to

generate an equilibrium of ongoing growth all production functions must in general exhibit constant

returns to scale in the factors of production that are being accumulated endogenously. This is a
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strong condition, one that imposes a strict knife-edge restriction on the production structure, and has

been extensively criticized; see Solow (1994).

These considerations have stimulated the development of non-scale growth models; see

Jones (1995a, 1995b), Segerstrom (1998) and Young (1998).  The advantage of such models is that

they are consistent with balanced growth under quite general production structures.  Indeed, if the

knife-edge restriction that generates traditional endogenous growth models is not imposed, then any

stable balanced growth equilibrium is characterized by the absence of scale effects. From this

standpoint, non-scale growth equilibria should be viewed as being the norm, rather than the

exception.  In this case the long-run equilibrium growth rate is determined by technological

parameters, in conjunction with the exogenously given growth rate of labor, and is independent of

macro policy instruments.

In light of the empirical evidence, and the theoretical restrictions associated with endogenous

growth models, the generality of the production structures compatible with balanced-growth paths in

the non-scale growth model enhances the importance of the latter.  These models are in many

aspects a hybrid of endogenous and neoclassical models.2  Technology can still be endogenous and

the outcome of agents’ optimizing behavior, as in Romer’s (1990) work, yet the long-run growth rate

is determined very much as in the Solow-Swan model, which in fact is an early example of a non-

scale model.  Thus, one is beginning to see a merger between the old and the new growth theory.

The non-scale model offers advantages on another issue, namely the speed of convergence.

This issue is important for the reason that this speed is the crucial determinant of the relevance of the

steady state relative to the transitional path. Influential empirical work by Barro and Sala-i-Martin

(1992b, 1995), Sala-i-Martin (1994), Mankiw, Romer and Weil (1992) and others established 2-3%

as a benchmark estimate of the convergence rate. 3  But both the one-sector Ramsey growth model

and the two-sector Lucas (1988) endogenous growth model generate speeds of convergence that

                                                  
2 Jones (1995a) referred to such models as “semi-endogenous” growth models.
3 Subsequent studies suggest that the convergence rates are more variable and sensitive to time periods and the set of
countries than originally suggested and a wider range of estimates have been obtained.  For example, Islam (1995)
estimates the rate of convergence to be 4.7% for non-oil countries and 9.7% for OECD economies.  Temple (1998)
estimates the rate of convergence for OECD countries to be between 1.5% and 3.6% and for non-oil countries to be
between 0.3% and 6.7%.  Evans (1997) obtains estimates of the convergence rate of around 6% per annum.  Caselli et al.
(1996) obtain an even higher rate of convergence of around 10%.
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greatly exceed this empirical benchmark, being approximately 7% in the neoclassical model and

10% in the Lucas model.  Eicher and Turnovsky (1999b), (2001) show how the two-sector non-scale

model can replicate the empirical estimates of the rate of convergence with relative ease.4

Interestingly, the speed of convergence offers another connection between the new and the

old growth theory.  After Solow (1956), Swan (1956), Uzawa (1961) and others established the

formal dynamic structure of the neoclassical growth model, other authors including R. Sato (1963),

K. Sato (1966), Conlisk (1966), and Atkinson (1969) addressed the question of the speed of

adjustment toward the steady state.  Already early on, this was recognized as being important, for the

reason that this speed is the crucial determinant of the relevance of the steady state relative to the

transitional path.  The range of estimates of convergence speeds obtained in this early literature was

extensive, being sensitive to the specific characteristics of the model, such as the returns to scale, the

structure of the technology, the rate of technological progress, and number of sectors.

1.2 Scope of this Paper

It is beyond the scope of this paper to present an exhaustive discussion of growth theory.  For

that the reader should refer to Grossman and Helpman (1991), Barro and Sala-i-Martin (1995), and

Aghion and Howitt (1998) who provide comprehensive treatments of the subject, albeit from

different perspectives.  Rather, the purpose of this paper is to exposit the investment-based growth

models, focusing on the common structures between the old and the new growth theories.  We shall

restrict ourselves to closed economies, although the international aspects of traded and growth are

increasingly important.

We begin our discussion in Section 2 by expositing a small canonical model of a growing

economy, which is sufficiently general to encompass alternative models.  Sections 3 and 4 then

considers two alternative versions of the AK growth model as special cases.  Such models have been

used particularly to analyze the effects of fiscal policy on growth performance.

Section 3 begins with the simplest Romer (1986) model with fixed labor supply and then

                                                  
4 This contrasts with Ortigueira and Santos (1997) who achieve a similar reduction in the rate of convergence in the two-
sector endogenous growth model, by introducing appropriate adjustment costs to investment.
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modifies this model to the case where labor is supplied elastically.  It emphasizes how going from

one assumption to the other dramatically changes the determination of the equilibrium growth rate

and the impact of fiscal policy.  Section 4 discusses the Barro (1990) model where government

expenditure is productive and analyzes optimal fiscal policy in that setting.

These initial models had the characteristic that the economy is always on its balanced growth

path, and hence abstract from transitional dynamics.  This is clearly a limitation and Section 5

discusses one straightforward way that transitional dynamics may be introduced.  This is through the

introduction of government capital, so that in contrast to the Barro model, government expenditure

impinges on production as a stock, rather than as a flow.  But transitional dynamics can also arise in

other ways, and these are discussed in the next two sections.

Section 6 discusses the Lucas (1988) model where the production technology is augmented

to two sectors, one producing final output and physical capital, the other producing human capital,

showing the nature of the dynamics this introduces.  Other authors to analyze the two-sector model

include Mulligan and Sala-i-Martin (1993), Devereux and Love (1994), and Bond, Wang and Yip

(1996).  Section 7 considers the non-scale growth model.  This is characterized by a higher order

dynamic system than that of the corresponding endogenous growth model, so that even the simplest

one-sector model is associated with transitional dynamics.

2. A Canonical Model of a Growing Economy

We begin by describing the generic structure of an economy that consumes and produces a

single aggregate commodity.  There are N identical individuals, each of whom has an infinite

planning horizon and possesses perfect foresight.  Each agent is endowed with a unit of time that can

be allocated either to leisure, λ , or to labor, ( )1 − l . Labor is fully employed so that total labor

supply, equal to population, N, grows exponentially at the steady rate Ṅ = nN .  Individual domestic

output, Yi , of the traded commodity is determined by the individual's private capital stock, Ki , his

labor supply, ( )1 − l , and the aggregate capital stock K = NKi .
5  In order to accommodate growth

                                                  
5Since all agents are identical, all aggregate quantities are simply multiples of the individual quantities, X NXi= .  Note
that since all agents allocate the same share of time to work, there is no need to introduce the agent’s subscript to l .
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under more general assumptions with respect to returns to scale, we assume that the output of the

individual producer is determined by the Cobb-Douglas production function: 6

Y l K Ki i= − −α σ σ η( )1 1      0 1 0< < <
>σ η, (1a)

This formulation is akin to the earliest endogenous growth model of Romer (1986).  The spillover

received by an individual from the aggregate stock of capital can be motivated in various ways.  One

is to interpret K as knowledge capital, as Romer suggested.  Another, is to assume N specific inputs

(subscripted by i) with aggregate K representing an intra-industry spillover of knowledge.7

Each private factor of production has positive but diminishing marginal physical

productivity.  To assure the existence of a competitive equilibrium the production function exhibits

constant returns to scale in the two private factors [Romer (1986)].  In contrast to the standard

neoclassical growth model, we do not insist that the production function exhibits constant returns to

scale, and indeed total returns to scale are 1 + η , and are increasing or decreasing, according to

whether the spillover from aggregate capital is positive or negative.

As we will show in subsequent sections, the production function is sufficiently general to

encompass a variety of models.  For example, we will show that the model is consistent with long-

run stable growth, provided returns to scale are appropriately constrained.  This contrasts with

models of endogenous growth and externalities in which exogenous population growth can be shown

to lead to explosive growth rates; see Romer (1990).  We should also point out that the standard AK

model emerges when σ + η = 1,  n = 0, and the neoclassical model corresponds to η = 0.

Aggregate consumption in the economy is denoted by C, so that the per capita consumption

of the individual agent at time t is C N = Ci , yielding the agent utility over an infinite time horizon

represented by the intertemporal isoelastic utility function:

Ω ≡ ( )( ) −∞ < < > > + >
∞ −∫ 1 1 0 1 1 1

0
γ γ θ γ θ γθθ

γ
ρC l e dti

t ; ; , ( ),   (1b)

where 1 (1 − γ ) equals the intertemporal elasticity of substitution, and θ  measures the

                                                  
6When production functions exhibit non-constant returns to scale in all factors, the existence of a balanced growth
equilibrium requires the production function to be Cobb-Douglas, as assumed in (1a); see Eicher and Turnovsky (1999a).
7A negative exponent can be interpreted as reflecting congestion, along the lines of Barro and Sala-i-Martin (1992a).
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substitutability between consumption and leisure in utility.8  The remaining constraints on the

coefficients in (1b) are required to ensure that the utility function is concave in the quantities C and l.

We shall assume that income from current production is taxed at the rate τ y , while consumption is

taxed at the rate τ c .  We shall illustrate the contrasting implications of different models by analyzing

the purely distortionary aspects of taxation and assume that revenues from all taxes are rebated to the

agent as lump sum transfers Ti .  Agents accumulate physical capital, which for simplicity we

assume does not depreciate, so that the individual’s net rate of capital accumulation is given by his

instantaneous budget constraint:

˙ ( ) ( )K Y C T nKi y i c i i i= − − + + −1 1τ τ (1c)

The agent's decisions are to choose his consumption, Ci , leisure, l , and rate of capital

accumulation, K̇i , to maximize the intertemporal utility function, (1b), subject to the production

function (1a) and accumulation equation, (1c).  The optimality conditions with respect to Ci , and l ,

are respectively

C li c
γ θγ λ τ− = +1 1( ) (2a)

θ
λ τ σγ θγC l

Y

li
y i− =

− −
−

1 1 1

1

( )( )

( ) (2b)

where λ  is the shadow value of capital (wealth).  Equation (2a) equates the marginal utility of

consumption to the tax-adjusted shadow value of capital, while (2b) equates the marginal utility of

leisure to its opportunity cost, the after-tax marginal physical product of labor (real wage), valued at

the shadow value of wealth.  Optimizing with respect to Ki  implies the arbitrage relationships

ρ λ λ τ σ− ( ) = −( ) −˙ ( )1 y i iY K n (2c)

Equation (2c) is the standard Keynes-Ramsey consumption rule, equating the marginal return on

consumption to the growth-adjusted after-tax rate of return on holding capital.  Finally, in order to

                                                  
8 This form of utility function is consistent with the existence of a balanced growth path; see Ladrón-de-Guevara,
Ortigueira, and Santos (1997).  The specification in (1b) is the case of pure leisure; they also consider the case where
utility derived from leisure depends upon its interaction with human capital.
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ensure that the agent's intertemporal budget constraint is met, the following transversality condition

must be imposed

lim
t

i
tK e

→∞

− =λ ρ 0 (2d)

The government in this canonical economy plays a limited role.  It taxes income and

consumption, and then rebates the tax revenues.  In aggregate, these decisions are subject to the

balanced budget condition

τ τy cY C T+ = (3)

Aggregating (1c) over the N individuals, and imposing (3) leads to the aggregate goods market

clearing condition, expressed as the growth rate:

K̇

K

Y

K

C

K
= − (4)

The model can thus be summarized by the 3 optimality conditions (2a) – (2c), together with

the goods market clearing condition, (6).  Many models assume that labor is supplied inelastically, in

which case the optimality condition, (2b), ceases to be operative.

3. The Endogenous Growth Model

The investment-based endogenous growth model has been the subject of intensive research

since 1986, with much of the focus being on the role of fiscal policy on growth and welfare.9  As we

shall demonstrate, the endogeneity (or otherwise) of labor is an important determinant of the

equilibrium growth rate, and the effects of policy.

The key feature of the endogenous growth model is that it can generate ongoing growth in

the absence of population growth; i.e. if n = 0.  For this to occur, the production function, (1a), must

have constant returns to scale in the accumulating factors, individual and aggregate capital, that is,

                                                  
9 See, for example, Barro, (1990), Jones and Manuelli (1990), ), King and Rebelo (1990), Rebelo (1991), Jones,
Manuelli, and Rossi (1993), Ireland (1994), Turnovsky (1996a, 2000), Ortigueira (1998).
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σ η+ =1 (5)

Substituting this into (1a), this implies individual and aggregate production functions of the form

Y l K K Y l N Ki i= −[ ] = −[ ]−α αη η η( ) ; ( )1 11    (6)

The individual production function is thus constant returns to scale in private capital, Ki , and in

labor, measured in terms of “efficiency units” ( )1 − l K .  Summing over agents, the aggregate

production function is thus linear in the endogenously accumulating capital stock.   Note that as long

as η ≠ 0 so that there is an aggregate externality, the average (and marginal) productivity of capital

depends upon the size of the population.  Increasing the population, holding other technological

characteristics constant, increases the productivity of capital and the equilibrium growth rate.  The

economy is thus said to have a “scale effect”; see Jones (1995a).  Such scale effects run counter to

the empirical evidence and have been a source of criticism of the AK growth model; see Backus,

Kehoe and Kehoe (1992).  These scale effects can be eliminated from the AK model if either (i)

there are no externalities (η = 0), or (ii) if the individual production function (1a) is modified to

Y l K K Ni i= − ( )−α σ σ η
( )1 1

so that the externality depends upon the average, rather than the aggregate capital stock; see

Mulligan and Sala-i-Martin (1993).  Henceforth throughout this section, we shall normalize the size

of the population at N =1 and thereby eliminate the issue of scale effects.

3.1 Inelastic Labor Supply

We begin with the widely discussed case where labor supply is inelastic, i.e. l l= .  With

population normalized, the individual and aggregate production functions are of the pure AK form:

Y AK Y AKi i= ;   = (7)

where A l≡ − −ασ σ( )1 1  is a fixed constant.  With the labor supply fixed, both the marginal and

average productivity of capital is constant.  The specification of the technology, consistent with
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ongoing growth, is a strong knife-edge condition, one for which the endogenous growth model has

been criticized; see Solow (1994).10

The solution proceeds by trial and error, by postulating a solution of the form C K= µ , where

µ  is a constant to be determined.  Differentiating (2a) with respect to time, and combining with (4)

and (7) with fixed employment (and normalized population), leads to the following explicit solutions

for the equilibrium growth rate and consumption-capital ratio:

˙ ˙ ( )C

C

K

K

A y= ≡ =
− −

−
ψ

τ ρ
γ

1

1
(8a)

C

K

A A y≡ =
+ − − −

−
µ

ρ γ τ
γ

( ) ( )1 1

1
(8b)

These two expressions specify the ratio of consumption-capital, and the rate of growth of capital

(and therefore consumption) along the optimal path, in terms of all exogenous parameters  Noting

that Y AK=  the right hand side of (8a) can be written as Y K C Y( ) −( )1 .  Thus (8a) asserts that the

equilibrium rate of growth of capital equals the product of the savings rate, 1 −( )C Y  together with

the output-capital ratio, precisely as in Harrod (1939).  The difference is -- and it is significant -- that

the savings rate is endogenously determined through intertemporal optimization, rather than being

assumed exogenously.

In addition, the transversality condition (2d) must hold  Using (8a), (8b), and the fact that

˙ ( )λ λ γ ψ= −1 , this implies the following constraint on the equilibrium growth rate in the economy:

ρ γψ− > 0; i.e. ρ γ τ> −A y( )1 . (8c)

Condition (8c) is automatically satisfied for γ ≤ 0 (thereby including the logarithmic utility

function); otherwise it imposes a constraint on the tax rate.11 In any event, the condition (8c) for a

viable solution is a weak one that any reasonable economy must surely satisfy.

The following general characteristics of this equilibrium can be observed.

                                                  
10 Note that the technology (7) is identical to that of the original Harrod-Domar model, to which the AK model is a
modern counterpart.  It was Harrod, himself, who originally referred to the “knife-edge” characteristics of his model.
11 The empirical evidence on the intertemporal elasticity of substitution overwhelmingly suggests it is less than unity, i.e.
γ < 0, thus supporting the transversality condition (8c).



12

(i) Consumption, capital, and output are always on their steady-state growth paths,

growing at the rate ψ .  This is driven by the difference between the after-tax rate of return on

foreign bonds and the rate of time preference.

(ii) With all taxes being fully rebated and labor supply fixed, the consumption tax is

completely neutral.  It has no effect on any aspect of the economic performance and acts like a pure

lump-sum tax.

(iii)  An increase in income tax leads to less investment and growth, and more consumption.

A key issue concerns the effects of tax changes, on the level of welfare of the representative

agent, when consumption follows its equilibrium growth path.  This is given by the expression:

Ω = [ ] = [ ]
−

∞ −∫ 1
0

0

0

γ
µ

γ ρ γψ
ψ γ ρ

γ γ

C e e dt
Kt t( )

( )
(9)

Thus, the overall intertemporal welfare effects of any policy change depend upon their effects on (i)

the initial consumption level, and (ii) the growth rate of consumption.  On impact, the higher tax

raises current consumption, which is welfare improving in the short run.  But at the same time, it

reduces the growth rate, and this is welfare deteriorating.  Evaluating (9) we can show that the

overall effect on intertemporal welfare is:

d d A

c
y yΩ

Ω
τ

γ
τ

γ ρ γψ
= −

− −( ) ≤
2

1
0

( )

Starting from a zero tax, the imposition of a tax has no effect on welfare; the benefits to current

consumption are exactly offset by the discounted adverse effects on the growth rate.  But with a

positive initial tax. the adverse growth effects dominate and there is a net welfare loss.

3.2 Elastic Labor Supply

The endogenous growth model we have been discussing includes two interdependent criticial

knife-edge restrictions: (i) inelastic labor supply, and (ii) fixed productivity of capital.  The structure

of the equilibrium changes significantly when the labor supply is generalized.  This introduces two
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key changes.  The first is that the production function is modified to (6), so that the productivity of

capital now depends positively upon the fraction of time devoted to labor.  Second, the fixed

endowment of a unit of time leads to the requirement that the steady-state allocation of time between

labor and leisure must be constant.

This latter condition provides a link between the long-run rate of growth of consumption and

the rate of growth of output.  This can be seen by dividing the optimality condition (2a) by (2b).  On

the left hand side we see that with the allocation of time remaining finite, the marginal rate of

substitution between consumption and leisure grows with consumption.  On the right hand side we

see that, given the fixed labor supply, the wage rate grows with output.  For these condition to

remain compatible over time, the equilibrium consumption-output ratio must therefore remain

bounded, being given by:

C

Y

C

Y

l

l
i

i

y

c

= =
−
+





 −






−1

1 1
1τ

τ
σ

θ
(10)

To obtain the macroeconomic equilibrium we take the time derivatives of: (i) the optimality

condition for consumption, (2a), (ii) the equilibrium consumption-output ratio, (10), and, (iii) the

production function, (6).  Combining the resulting equations with (6) and (2c), the macroeconomic

equilibrium can be expressed by the differential equation in l:

dl(t)
dt

= G(l)
F(l)

, (11)

where F l
l l

( ) ( )
( )( )≡ − +[ ] + − −

−
>1 1

1 1 1
1

0γ θ γ η

G l
l

l

Y

Ky
y

c

( ) ( ) ( )= − − − −
−
+





 −






−








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1
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1τ σ γ

τ
τ
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3.2.1 Balanced-Growth Equilibrium

Steady-state equilibrium is attained when the fraction of time allocated to leisure (or

equivalently to labor supply) ceases to adjust.  Setting l̇ = 0, steady state is characterized by the

following balanced-growth conditions:
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˙ ˙ ˙ ˙
˜C

C

Y

Y

K

K
= = = −

−
≡1

1 γ
λ
λ

ψ

Substituting for Y K( )  from (6) into (2c) yields

RR: ˜ ( )( ( ˜)ψ
γ

τ ασ ρσ=
−

− − −{ }−1
1

1 1 1
y l . (12a)

Equation (12a) describes the trade-off locus, RR, between the equilibrium growth rate, ψ̃ , and

leisure, l̃ , that ensures the equality between the after-tax rate of return on capital and the return on

consumption.  This curve can be shown to be negatively sloped and concave with respect to the

origin; see Figure 1.  This is because a higher fraction of time devoted to leisure will reduce the

productivity of, and return, to capital.  For rates of return to remain in equilibrium, the rate of return

on consumption must fall correspondingly, and this requires the growth rate of the marginal utility of

capital to rise, that is, the balanced-growth rate of the economy must decline.

Similarly, substituting (C/Y) from (10) and Y K( )  into (4) yields

PP: ˜
˜

˜ ( ˜)ψ τ
τ

σ
θ

α σ= − −
+







−
−



















− −1
1
1

1

1
1 1w

c

l

l
l . (12b)

The locus, PP describes the trade-off between the equilibrium growth rate and leisure that ensures

product market equilibrium is maintained.  This, too, is negatively sloped and concave.  Intuitively, a

higher fraction of time devoted to leisure reduces the productivity of capital.  It also increases the

consumption-output ratio, thus having a negative effect on the growth rate of capital in the economy.

As l increases, employment declines, the marginal product of labor increases, and thus trade-off

along the PP locus becomes steeper. 12

                                                  
12 Being nonlinear, (12a) and (12b) may, or may not, intersect, so that a balanced growth equilibrium may, or may not,
exist.  A sufficient condition for a unique steady-state balanced-growth path is that ( ) ( )1 1 1− − −τ σ γy

< − +[ ]min ( ) ( ) ,1 1τ σ τ θ ρ αy c  And whether this condition  is met depends upon tax rates and other parameters.
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3.2.2 Equilibrium Dynamics

We return to the dynamic equation (11) and consider its stability in the neighborhood of the

balanced-growth equilibrium defined by (12a, 12b).  In steady-state equilibrium, G(l̃ ) = 0, and the

linearized dynamics about that point are represented by

dl(t)
dt

= ′G (l̃ )

F(l̃ )
(l(t) − l̃ ). (13)

The existence of a balanced-growth equilibrium suffices to ensure that ′G (l̃ ) > 0, in which case (13)

is an unstable differential equation.  The only solution consistent with a balanced-growth equilibrium

is for l = l̃  at all points of time so that the economy is always on the balanced-growth path (12a) –

(12b)).13

3.2.3 Fiscal Shocks

The model can be conveniently employed to analyze the effects of various kinds of fiscal

disturbances.  The qualitative effects of simple changes in the fiscal instruments on the

macroeconomic equilibrium are readily obtained by considering shifts in the RR and PP curves.

Others, involving composite changes require more formal analysis.

One important consequence of endognizing the labor supply is because of the work-leisure

choice, the consumption tax, τ c  is no longer neutral.  Indeed it has the same qualitative effect as an

increase in the income tax rate, τ y , decreasing the fraction of time devoted to work and reducing the

equilibrium growth rate.  These responses are illustrated in Figure 1.  Part A illustrates the case of an

increase in the income tax, τ y , with revenues rebated in lump-sum fashion.  To the extent that it is

levied on capital income, it leads to a downward rotation in the RR locus, which given the fraction of

time devoted to leisure, leads to an immediate reduction in the growth rate, as measured by the move

from A to E.  This in turn reduces the return on consumption, causing a substitution of leisure for

                                                  
13 For more general production structures it is possible that (13) is stable, giving rise to potential problems of
indeterminate equilibria.  This may quite plausibly occur for production functions more general than the Cobb-Douglas.
In a model with both physical and nonhuman capital Benhabib and Perli (1994), Ladrón-de-Guevara, Ortigueira, and
Santos (1997) show how the steady-state equilibrium may become indeterminate. Other authors have emphasized the
existence of externalities as sources of indeterminacies of equilibrium; see Benhabib and Farmer (1994).
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labor, and reducing the rate of return on capital to that of consumption.14  This decrease in

employment reduces output, leading to a further reduction in the growth rate.  To the extent that it is

levied on wage income, it leads to to an upward rotation in the PP locus.  Given leisure, this leads to

an immediate reduction in the consumption-output ratio, and a corresponding rise in the growth rate

of output, from A to F.  This raises the return on consumption, causing agents to increase

consumption and leisure over work.  This causes a reduction in output and the growth rate, leading

to a reduction in the return to capital and in consumption.  The ultimate shift in equilibrium is thus

represented by a move from A to B, being a combination of the moves EB and FB, with both

components of the tax increase reinforcing their common effects on leisure and the growth rate.  An

increase in the consumption tax leads only to an upward rotation in the PP locus, as illustrated in

Part B and  is therefore equivalent to a wage tax.15

4. Productive Government Expenditure

4.1 The Barro-Model

Thus far we have focused on the taxation side of the government budget.  But most tax

revenues are used to finance government expenditures, which provide some benefits to the economy.

We shall focus on government expenditure that enhances the productive capacity of the economy,

identifying such expenditures as being on some form of infrastructure.  This model was developed

by Barro (1990), and like Barro, we shall make the simplifying assumption that the benefits are

derived from the flow of productive government expenditures.  In Section 5 we shall briefly discuss

the more plausible case where it is the accumulated stock of government expenditure that is relevant.

We abstract from labor (setting l = 0) and assume that the production function of the

representative firm is now specified by

Y G K G K Ki s i s i i= ≡ ( ) < <−α α ηη η η1 0 1,   0 < η <1, (14)

                                                  
14The rate of return on consumption equals ρ − λ̇ λ , which varies positively with the growth rate, ψ .
15 The contrast in the effects of tax rates between models having fixed and endogenous labor supply is much more
dramatic in an open economy.  For example, the effect of an increase in the income tax rate, which reduces growth when
labor supply is fixed, is fully borne by labor supply, when labor supply is endogenous, leaving the equilibrium growth
rate unaffected; see Turnovsky (1999b).
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where Gs  denotes the flow of productive services enjoyed by the individual firm.  Thus productive

government expenditure has the property of positive, but diminishing, marginal physical product,

while enhancing the productivity of private capital.  As in Section 3, we assume that the population

growth n = 0.

We shall assume that the services derived from aggregate expenditure, G, are

G G
K

Ks
i= 





−1 ε

(15)

where K denotes the aggregate capital stock.  Most public services are characterized by some degree

of congestion and (15) provides one convenient formulation that builds on the public goods

literature; see Edwards (1990).  The parameter ε  can be interpreted as describing the degree of

relative congestion associated with the public good and the following special cases merit comment.

If ε = 1, the level of services derived by the individual from the government expenditure is fixed at

G, independent of both the firm’s own usage of capital and aggregate usage.  The good G is a non-

rival, non-excludable public good that is available equally to each individual; there is no congestion.

Since few, if any such public good exist, it is probably best viewed as a benchmark.  At the other

extreme, if ε = 0, then only if G increases in direct proportion to the aggregate capital stock, K, does

the level of the public service available to the individual firm remain fixed. We shall refer to this

case as being one of proportional (relative) congestion.  In that case, the public good is like a private

good, in that since K NKi= , the individual receives his proportionate share of services; G G Ns = .

In order to sustain an equilibrium of ongoing growth, the level of government expenditure

must be tied to the scale of the economy.  This can be achieved most conveniently by assuming that

the government sets its level of expenditure as a share of aggregate output, Y NYi= :

G gY= . (16)

In an environment of growth this is a reasonable assumption.  Government expenditure thus

increases with the size of the economy, with an expansionary government expenditure being denoted

by an increase in g.
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Summing (16) over the N identical agents and substituting (15) and (16), we obtain

G gN K Y g N K= ( ) = ( )− −
α αηε η η ηε η1 1 1 1( ) ( )

;    (17)

Aggregate output thus has the fixed AK technology, where the productivity of capital depends

(positively) upon the productive government input.  Notice that provided ηε > 0, the productivity of

capital depends upon the size (scale) of the economy, as parameterized by the fixed population, N.

This is because the size of the externality generated by government expenditure increases with the

size of the economy, playing an analogous role to aggregate capital in the Romer (1986) model.  As

in that model, this scale effect disappears if ε = 0, so that there is proportional congestion and each

agent receives his own individual share of government services, G N .

We now re-solve the representative individual’s optimization problem.  In so doing, he is

assumed to take aggregate government spending, G, and the aggregate stock of capital, K, as given,

insofar as these impact on the productivity of his capital stock.  Performing the optimization, the

optimality conditions (2a) and (2b) remain unchanged.  The optimality condition with respect to

capital is now modified to:

ρ λ
λ

τ ηε
− =

− −˙ ( )( )1 1y i

i

Y

K
(2c’)

The difference is that the private marginal physical product of capital is now proportional to

( )1 −ηε , depending both upon the degree of congestion and the productivity of government

expenditure.  The less congestion (the larger ε ) the smaller the benefits of government expenditure

are tied to the usage of private capital, thus lowering the return.

The other modification is to the government budget constraint, (4) which becomes:

τ τy cY C G+ = (3’)

4.2 Optimal Fiscal Policy

It is clear from Section 4.1 that growth and economic performance are heavily influenced by

fiscal policy in this model.  This naturally leads to the important question of the optimal tax
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structure.  To address this issue it is convenient to consider, as a benchmark, the first-best optimum

of the central planner, who controls resources directly, against which the decentralized economy can

be assessed.  The central planner is assumed to internalize the equilibrium relationship NK Ki = , as

well as the expenditure rule (16).  The optimality conditions are now modified to

Ci
γ λ− =1 (2a’)

ρ λ
λ

− = −˙ ( )1 g Y

K
i

i

(2c”)

The key difference is that the social return to capital nets out the fraction of output appropriated by

the government.

It is straightforward to show that the decentralized economy will mimic the first-best

equilibrium of the centrally planned economy if and only if

( ) ( )( )1 1 1− = − −g yτ εη (18a)

Intuitively, government expenditure, by being tied to the stock of capital in the economy, induces

spillovers into the domestic capital market, generating distortions that require a tax on capital

income in order to ensure that the net private return on capital equals its social return.

To understand (18) better, it is useful to observe that the welfare-maximizing share of

government expenditure, is (Barro, 1990):

ĝ = η (19)

Substituting (19) into (18) and simplifying, the optimal income tax can be expressed in the form

ˆ
ˆ ˆ( )

( )
τ ηε

ηε ηε
ε

ηεy

g g g g= −
−

= −
−

+ −
−1 1
1

1
. (18a’)

In order to finance its expenditures, (3’), the government must, in conjunction with τ̂ y , set a

corresponding consumption tax τ̂ c :

ˆ ( )
( )

τ ηε
ηεc

g

C Y
= −

− ( )
1

1
. (18b)
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Equation (18a’) emphasizes that the optimal tax on capital income corrects for two

distortions.  The first is due to the deviation in government expenditure from the optimum the

second is caused by congestion.  Comparing (18a’) and (18b) we see that there is a tradeoff between

the income and the consumption tax in achieving these objectives, and that this depends upon the

degree of congestion.  This tradeoff is seen most directly if g is set optimally in accordance with

(19).  In this case, if there is no congestion, government expenditure should be fully financed by a

consumption tax alone; capital income should remain untaxed.  As congestion increases ( ε

declines), the optimal consumption tax should be reduced and the income tax increased until with

proportional congestion, government expenditure should be financed entirely by an income tax.

It is useful to compare the present optimal tax on capital with the well-known Chamley

(1986) proposition which requires that asymptotically the optimal tax on capital should converge to

zero.  The Chamley analysis did not consider any externalities from government expenditure.

Setting η = 0, we still find that the optimal tax on capital is equal to the share of output claimed by

the government ( τ = g ).  The difference is that by specifying government expenditure as a fraction

of output, its level is not exogenous, but instead is proportional to the size of the growing capital

stock.  The decision to accumulate capital stock by the private sector leads to an increase in the

supply of public goods in the future.  If the private sector treats government spending as independent

of its investment decision (when in fact it is not), a tax on capital is necessary to internalize the

externality and thereby correct the distortion.  Thus, in general, the Chamley rule of not taxing

capital in the long run will be nonoptimal, although it will emerge in the special case where g = ηε ,

in which case there is no spillover from government expenditure to the capital market.

We conclude by noting two further points.  The equilibrium growth rate in the Barro model is

˜
( )

( )

ψ
α ρ

γ

η η

=
− ( ) −

−

−
1

1

1 1
g g

(19)

It is straightforward to show implying that the equilibrium growth rate is maximized at the optimal

infrastructure-capital ratio.  Maximizing the productivity of government expenditure net of resource

costs maximizes both the growth rate and utility.  The coincidence of the growth-maximizing size of
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government and its welfare-maximizing size is a strong result, but it is not robust.  For example, it

ceases to hold if the installation of new capital involves adjustment costs of the type, where the

productive government investment (plausibly) reduces the costs of adjustment, along with enhancing

the productivity of private capital; see Turnovsky (1996b).  It also ceases to apply if the government

production good enters the private production function as a stock, rather than as a flow; see

Futagami, Morita, and Shibata (1993).  Third, it ceases to apply to the economy being considered

here if that economy is subject to stochastic productivity.  This is because growth maximization in

general entails too much risk for a risk-averse representative agent; see Turnovsky (1999a).

The final point is that it is possible to augment this model to include endogenous labor.  The

qualitative nature of the solution is analogous to that of Section 3.2.  A detailed analysis of fiscal

policy in this case is provided by Turnovsky (2000).

5. Public and Private Capital

The models discussed thus far all have the characteristic that consumption and output

(capital) are on their balanced growth paths; there are no transitional dynamics.  Instead, the

economy adjusts infinitely fast to any exogenous shock, thus contradicting the empirical evidence

pertaining to speeds of convergence.  As noted, the point of this literature is that the economy adjusts

relatively slowly, with the rate of 2% per annum being a benchmark estimate. This implies that the

economy is mostly off its balanced growth path, on some transitional path, which only gradually

converges to steady state.  It is therefore important to modify the model to allow for such transitional

dynamics, and this can be achieved in several ways, all of which assign a central role to a second

state variable to the dynamics.

In this section, we consider one important modification to the basic model that accomplishes

this objective: the introduction of public in addition to private capital.  As we will show in Section 6

the two-sector endogenous growth model of Lucas (1988), in which the two capital goods are

physical capital and human capital is an alternative way. In both these cases, the stable adjustment

path is a one-dimensional locus, implying that all variables converge to their respective long-run

equilibrium at the same constant rate.  But one further way transitional dynamics can be introduced
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is through a modification of the technology to allow it to have non-scale growth, along the lines

initially proposed by Jones (1995a, 1995b).  It is shown that the more general production technology

that it encompasses increases the dimensionality of the transitional path, thus allowing for more

flexible dynamic transitional behavior patterns.  This model will be discussed further in Section 7.

Most models analyzing productive government expenditure treat the current flow of

government expenditure as the source of contribution to productive capacity.  While the flow

specification has the virtue of tractability, it is open to the criticism that insofar as productive

government expenditures are intended to represent public infrastructure, such as roads and

education, it is the accumulated stock, rather than the current flow, that is the more appropriate

argument in the production function.

Despite this, relatively few authors have adopted the alternative approach of modeling

productive government expenditure as a stock.  Arrow and Kurz (1970) were the first authors to

model government expenditure as a form of investment in the Ramsey model.  More recently, Baxter

and King (1993) study the macroeconomic implications of increases in the stocks of public goods.

They derive the transitional dynamic response of output, investment, consumption, employment, and

interest rates to such policies by calibrating a real business cycle model.  Fisher and Turnovsky

(1998) address similar issues from a more analytical perspective.

The literature introducing both private and public capital into growth models is sparse.

Futagami, Morita, and Shibata (1993), Glomm and Ravikumar (1994), and Turnovsky (1997a) do so

in a closed economy, and an extension to an open economy is developed by Turnovsky (1997b).

Private capital in the Glomm-Ravikumar model fully depreciates each period, rather than being

subject to at most gradual (or possibly zero) depreciation.  This enables the dynamics of the system

to be represented by a single state variable alone, so that the system behaves much more like the

Barro model in which government expenditure is introduced as a flow.  In particular, under constant

returns to scale in the reproducible factors, there are no transitional dynamics and the economy is

always on a balanced growth path.

We now outline the main features of such a model, in the simpler case where labor supply is

fixed.  The key modification to the model is the production function, which is now of the form
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Y = αKg
η K1−η α > 0; 0 < η <1, (20)

where K denotes the representative firm's capital stock of private capital and Kg denotes public

(government) capital.  The production function is analogous to that introduced in Section 4, except

that the government input is introduced as a stock, rather than as a flow.  Equation (20) embodies the

assumption that the public capital enhances the productivity of private capital, though at a

diminishing rate.  Public capital is not subject to congestion and neither form of capital is subject to

depreciation.16  The model abstracts from labor, so that as in the basic AK model of Sections 3 and 4,

private capital should be interpreted broadly to include human, as well as physical, capital.

The other main modification is that government expenditure leads to the accumulation of

public capital and assuming that the government sets its investment as a proportion, g, of output:

K̇g = G = gY 0 < g <1. (21a)

In setting policy, the government is subject to its budget constraint:

G Y C Ty c= + +τ τ , (21b)

where T denotes lump-sum taxes.  Summing the private and public budget constraint yields the

economy-wide resource constraint

Y = C + K̇ + K̇g . (22)

To derive the macroeconomic equilibrium, we need to express it in terms of stationary

variables.  For this purpose it is convenient to express it in terms of quantities relative to the growing

stock of private capital, namely, z ≡ Kg K;  c ≡ C K .  Taking the time derivatives of these quantities

and combining with (21) and (22), together with the optimality conditions for the private agent, the

equilibrium dynamics can be represented by

ż

z
= gαzη −1 − (1 − g)αzη + c (23a)

                                                  
16Turnovsky (1997a) extends the model to allow for congestion, along the lines of the analysis of Section 4.1.  Glomm
and Ravikumar (1994) make the opposite sign regarding depreciation, namely that capital lasts a single period.  This
assumption leads to the economy always being on its balanced growth path.
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˙ ( ) ( )
( )

c

c

z
g z cy=

− − −
−

− − +
1 1

1
1

τ α η ρ
γ

α
η

η . (23b)

The first of these equations describes the differential growth rate between public and private capital

and is obtained from the relationship ż z = K̇g Kg − K̇ K .  The second equation determines the

differential growth rate between consumption and private capital.  It is obtained from the

relationship ċ c = Ċ C  − K̇ K , where Ċ C is obtained, in turn, from combining the time derivative

of (2a’) with (21a) and (22).

5.1 Steady-State

Steady-state equilibrium is determined by

c̃ = (1 − g)α (z̃)η − gα (z̃)η −1 (24a)

( ) ( )(˜)
( ) ( ˜) ˜

1 1

1
1 0

− − −
−

− − + =
τ α η ρ

γ
α

η
ηy z

g z c , (24b)

which jointly determine the equilibrium values of z̃  and c̃ .  However, equations (24a) and (24b)

define a pair of nonlinear equations in z̃  and c̃ , and may or may not be consistent with a well-

defined steady state in which c̃ > 0,  z̃ > 0; see Turnovsky (1997a).  Having determined these

quantities, the corresponding (common) equilibrium growth rate of consumption and the two capital

stocks may be expressed in the following equivalent forms:

˜
˙̃ ˙̃ ˙̃

˜ ( ) ˜ ˜ψ α αη η≡ = = = = − −−C

C

K

K

K

K
g z g z cg

g

1 1 . (25)

The long-run effects of fiscal policies on the relative capital stock, z̃ , consumption ratio, c̃ ,

and the growth rate, ψ̃ , are obtained by considering (24a), (24b), and (25).  We shall discuss the

effects of changes in (i) the income tax rate and (ii) the share of government expenditure, assuming

that the government budget constraint is met through an appropriate adjustment in lump-sum taxes.

The equilibrium is independent of the consumption tax, τ c , which therefore operates as a lump-sum

tax, and may also serve as the balancing item in the government budget.
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Omitting details, the following responses to fiscal policy can be established.  An increase in

the income tax rate,τ y , [with tax revenues rebated] reduces the net rate of return to private capital,

thereby inducing investors to switch from saving to consumption, thus raising the consumption-

capital ratio and decreasing the growth rate of private capital.  This negative effect on the return to

private capital favors its decumulation and leads to a long-run increase in the ratio of public to

private capital.  By contrast, an increase in the share of output claimed by the government, financed

by a lump-sum tax, raises the equilibrium growth rate of capital unambiguously.17  The case

considered by Futagami, Morita, and Shibata (1993), in which government expenditure is

determined by tax revenues, corresponds to g y= τ  and hence dg d y= τ  and is a hybrid of these two

cases.  It is straightforward to verify that while the increase in g  raises the growth rate, the

corresponding increase in τ  does the opposite, rendering a net effect that depends upon (η − g) ,

precisely as in the Barro model, discussed in Section 4.1.  It then follows that, setting g = η  is

growth-maximizing.

5.2 Transitional Dynamics: Tax Cuts

The transitional dynamics for z  and c  are obtained by linearing (23) about (24) in the usual

manner.  And having derived these relationships, one can further derive the linearized dynamics for

the growth rates themselves.  The formal solutions are provided by Turnovsky (1997).  Figure 2

illustrates the transitional dynamics of private and public capital in response to a fiscal expansion

taking the form of a permanent cut in the income tax rate, financed by a lump-sum tax.

Suppose that the economy is initially in steady-state equilibrium at the point P, and that a

permanent tax cut is introduced.  The immediate effect of the lower tax is to raise the net return to

private capital, inducing agents to reduce their level of consumption and to increase their rate of

accumulation of private capital.  This increase in the growth of private capital causes the ratio of

public to private capital, z , to begin to decline.  As z  declines, the average productivity of private

capital, αzη  falls, causing its growth rate to decrease.  The transitional adjustment in the growth rate

                                                  
17This result does not mean that the government can increase the growth rate indefinitely by increasing g indefinitely.
There are constraints due to the fact that g < 1 and that the transversality conditions must be met.
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of private capital ( )ψ k  is illustrated by the initial jump from P to A , on the new stable arm X'X',

followed by the continuous decline AQ, to the new steady state at Q.  With the growth of public

capital being tied through aggregate output to the capital stocks in accordance with (21a), the growth

rate of public capital does not respond instantaneously to the lower tax rate,τ y .  The stable arm YY

remains fixed.  Instead, as z  declines, the average productivity of public capital αzη −1 rises, causing

the growth rate of public capital ( )ψ g  to rise gradually over time along the path PQ.  During the

transition, the growth rates of the two capital stocks approach their common long-run equilibrium

growth rate from different directions.

5.3 Optimal Fiscal Policy

Futagami, Morita, and Shibata (1993) analyze the optimal (welfare-maximizing) size of

government (optimal income tax) in this economy and show that it is smaller than the growth-

maximizing size.  This is in contrast to Barro (1990), who, introducing government expenditure as a

flow in the production function, finds that the welfare-maximizing and growth-maximizing shares of

government expenditure coincide.  The difference is accounted for by the fact that when government

expenditure influences production as a flow, maximizing the marginal product of government

expenditure net of its resource cost maximizes the growth rate of capital.  But it also maximizes the

social return to public expenditure, thereby maximizing overall intertemporal welfare.  By contrast,

when government expenditure affects output as a stock, public capital needs to be accumulated to

attain the growth maximizing level.  This involves foregoing consumption, leading to welfare losses

relative to the social optimum.  Intertemporal welfare is raised by reducing the growth rate, thereby

enabling the agent to enjoy more consumption. 

Turnovsky (1997a) analyzes optimal tax policy in this economy and shows that the first-best

tax policy comprises two components, one fixed, the other time-varying.  This is because there are

two objectives to attain.  The fixed component ensures that the steady-state of the first-best optimum

is replicated, and this has the general characteristics of the optimal tax structure of Chapter 13.  But

because the internal dynamics of the decentralized economy do not in general coincide with those of
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the first-best optimum, the time-varying component of the optimal tax is necessary to introduce the

appropriate correction along the transitional path.

6. Two-Sector Model of Endogenous Growth

Two-sector models of economic growth were pioneered by Uzawa (1961), Takayama (1963),

and others.  In this early literature, the two sectors corresponded to the production of the

consumption good and the production of the investment good, respectively.  The key results in that

early literature focused on the uniqueness and stability of equilibrium, which was shown to depend

critically upon the capital intensity of the investment good sector relative to the consumption sector.

In a seminal paper, Lucas (1988) introduced the two-sector endogenous growth model.  The

model includes two capital goods, physical capital and human capital.  The former is produced along

with consumption goods in the output sector, using as inputs both human and physical capital.

Human capital is produced in the education sector using both physical and human capital.  The

agent's decisions at any instant of time are (i) how much to consume, (ii) how to allocate his physical

and human capital across the two sectors, and (iii) at what rate to accumulate total physical and

human capital over time.  Having two capital goods, this model is characterized by transitional

dynamics.  However, because two-sector endogenous growth models initially proved to be

intractable, much of the analysis was restricted to balanced-growth paths (Lucas 1988; Devereux and

Love 1994), or to analyzing transitional dynamics using numerical simulation methods (Mulligan

and Sala-i-Martin 1993; Pecorino 1993; Devereux and Love 1994).  One important exception to this

is Bond, Wang, and Yip (1996) which, by using the methods of the two-sector trade model, provides

an effective analysis of the dynamic structure of the two-sector endogenous growth model.18

6.1 The Two-Sector Economy

There is a single, infinitely lived representative agent who accumulates two types of capital

for rental at the competitively determined rental rate.  The first is physical capital, K, and the second

                                                  
18Caballé and Santos (1993) provide an earlier analytical discussion of the transitional dynamics in the two-sector model.
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is human capital, H.  Neither of these capital goods is subject to depreciation and their accumulation

is free of adjustment costs.  For expositional simplicity, there is no government.

These two forms of capital are used by the agent to produce a final output good, X, taken to

be the numeraire, by means of a linearly homogeneous production function

X = aKX
α HX

(1−α ) ; 0 < α <1, (26a)

where, KX  and HX  denote the allocations of the two capital goods to the production of final output.

Goods may be either consumed, C, or added to the capital stock, which therefore evolves as follows

K̇ = aKX
α HX

1−α − C 0 < α <1. (26b)

The agent also adds to human capital, using an analogous production function

Ḣ = Y = bKY
δ HY

(1−δ ) ; 0 < δ <1 (26c)

The key feature of the production setup is that the two production functions are linearly

homogeneous in the two reproducible factors, K and H.  This is critical for an equilibrium with

steady growth to exist.  This specification is more general than the assumption frequently adopted

that physical capital is not an input into the production of human capital (i.e. δ = 0) in (26c).  Other

authors, however, have introduced externalities analogous to those introduced into the one-sector;

see Lucas (1988), Mulligan and Sala-i-Martin (1993).  As Bond, Wang, and Yip note, their approach

can be easily extended to include such externalities.  Both forms of capital are costlessly and

instantaneously mobile across the two sectors, with the sectoral allocations being constrained by

KX + KY = K (26d)

HX + HY = H . (26e)

The agent chooses the rate of consumption, C , capital allocations KX , KY , HX ,  and HY , and

rates of capital accumulation, K̇ and Ḣ , to maximize the intertemporal isoelastic utility function
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subject to the constraints (26a) - (26e), and the initial stocks of assets, K0 and H0.  From the

optimality conditions we immediately obtain

˙ ( )
( )

C

C

r q
tK= −

−
≡ρ

γ
ψ

1
    , (27)

where q denotes the relative price of human to physical capital.  While (27) is analogous to previous

expressions for the growth rate, for example, (8a), in general, q evolves during the transition, thereby

rendering the return on capital, rK , and the growth rate, ψ ( )t  time-varying.

As Bond, Wang, and Yip (1996) show, the macroeconomic dynamics can be represented by

three differential equations in: (i) k ≡ K H , the relative stocks of physical to human capital; (ii)

c ≡ C H , the ratio of consumption to human capital, and (iii) q.  As we will see, the steady-state

equilibrium will have the characteristic that ˙ ˙ ˙k h q= = = 0, so that consumption and the two types of

capital will all grow at a equilibrium rate determined by (27), while the relative price of the two

types of capital will be constant.

The derivation of the macroeconomic equilibrium proceeds in two stages.  The first stage

determines the static allocation of existing resources.  We express the sectoral capital intensities and

marginal physical products of capital in terms of the relative price of nontraded to traded goods, and

also express the absolute levels of the allocation of capital in terms of the gradually evolving

aggregate stocks, K and H.  The second stage then determines the dynamics.  As is characteristic of

two-factor, two-sector growth models, the dynamics of the system decouple, with the price dynamics

evolving independently of the quantity dynamics.

6.2 Transitional Dynamics

Working through the model one can show that the linearized transitional dynamics is

represented by a matrix equation of the following form:

q̇

ċ

k̇















=
a11 0 0

a21 0 a23

a31 −1 a33















q(t) − q̃

c(t) − c̃

k(t) − k̃















, (28)
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where the elements of the matrix have the following sign patterns:

sgn(a11) = −sgn(a23 ) = −sgn(a33 ) = sgn(δ − α );  a31 < 0 . (29)

The characteristic equation to (28) can be written as follows:

(µ − a11) µ 2 − a33µ + a23( ) = 0. (30)

where the factorization of (30) reflects the decoupling of the price and the quantity dynamics in (28).

As is familiar from two-sector models of international trade, the dynamics depends crucially

upon the relative sectoral capital intensity, which in the present context is measured by α δ− .  Thus

α δ>  corresponds to the output sector being relatively more intensive in physical capital than is the

human capital sector, and the common assumption, δ = 0, is an extreme example of this.  We now

show that irrespective of the relative sectoral intensity condition, ( )α δ− , (30) always describes a

stable saddle path.  Two cases must be considered.

First, suppose δ > α .  Then (29) yields a11 > 0,  a23 < 0,  a33 < 0 .  Equation (30) then implies

that the eigenvalue µ = a11 > 0 .  The remaining two roots are solutions to the quadratic factor in (30)

and, for the sign pattern noted, one of the roots is positive and the other is negative.  The root

µ = [a33 − (a33
2 − 4a23 )1 2 ] 2 < 0 is thus the unique stable root.  Second, if α > δ , then

a11 < 0,  a23 > 0,  a33 > 0 , so that the eigenvalue µ = a11 < 0 .  Moreover, the two roots to the quadratic

factor in (30) are now both positive, implying that µ = a11 < 0  is the unique stable root.  These two

alternative cases of capital intensity have important differences for the dynamics that we shall now

discuss.

 (i) δ > α :  Human Capital Sector Relatively More Intensive in Physical Capital

In this case the only solution for q consistent with the transversality condition is for q to

remain constant at its steady-state value, q̃ .  The stable solution to (28) is thus

q(t) = q̃ (31a)

k(t) − k̃ = (k0 − k̃ )eµt (31b)
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c(t) − c̃ = a23

µ
(k(t) − k̃ ), (31c)

where µ = [a33 − (a33
2 − 4a23 )1 2 ] 2 < 0.  Note that the consumption-human capital ratio moves

directly with the physical to human capital ratio; the stable saddlepath in c-k space is positively

sloped.  Intuitively, an increase in k results in a decrease in the relative supply of final output when

the human capital sector is more intensive in physical capital, so that c must fall to keep the two

factors accumulating at the same rate.  The constancy in the relative price, q, translates to the

constancy in the sectoral physical capital to human capital ratios.

It is convenient to focus on the transitional dynamics of the growth rates.  With the relative

price q constant, the consumption growth rate is fixed at the common steady-state growth rate:

˙
( )

( ˜) ˜C

C
t

r q
C

K≡ = −
−

≡ψ ρ
γ

ψ
1

    . (32)

By evaluating the expressions for the growth rate of physical capital, K̇ K K≡ ψ  and human capital,

Ḣ H H≡ ψ  and comparing with (32) one can establish the following.  Assuming that the economy

begins from an initial point at which k0 < k̃ , we see from (41a) - (41c) that the growth rates can be

ranked as follows along the transitional paths:

ψ ψ ψ ψK C Ht t t( ) ( ) ˜ ( )> ≡ > . (33)

The growth rates of physical and human capital approach their common equilibrium growth rate

from opposite sides.

 (ii) α > δ :  Physical Capital Sector Relatively More Intensive in Physical Capital

In this case the stable eigenvalue µ = a11 < 0), and the stable adjustment path is

k(t) − k̃ = (k0 − k̃ )ea11t (34a)

q(t) − q̃ = a11(a11 − a33 ) − a23a32

a11a31 − a21






(k(t) − k̃ ) (34b)

c(t) − c̃ = a21(a11 − a33 ) + a23a31

a11a31 − a21






(k(t) − k̃ ). (34c)
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The important point is that the relative price, q, is no longer constant, but follows a stable adjustment

path.  Evaluating the term in parentheses in (34b), one can establish that the relative price of human

to physical capital, q, is an increasing function of the relative stock of physical to human capital, k.

The slope of the stable c-k locus includes two conflicting influences: the direct effect as in case (i)

and the relative price effect.

One important difference between cases (i) and (ii) is that with the relative price q following

a transitional path, the growth rate of consumption now also has the same characteristic:

˙ ( ˜) ˜C

C

r q q
C

K≡ = ′ −
−

+ψ
γ

ψ
1

. (35)

For α > δ , we have ′rK < 0 , so that the growth rate of consumption is a decreasing function of the

physical capital to human capital ratio.  The adjustment of the relative price has an additional impact

on the transitional dynamics of the two types of capital; see Bond, Wang, and Yip (1996).

6.3 Fiscal Policy in Two-Sector Model

Bond, Wang, and Yip (1996) show that when one introduces distortionary taxes, the

dichotomy in the dynamics introduced by the sectoral intensity condition (δ − α ) is somewhat

broken.  It now becomes possible for the economy to be unstable, but it is also possible for it to have

"too many" stable roots, and for the economy to have a continuum of equilibria, the latter property

often being associated with increasing returns and externalities; Benhabib and Perli (1994).  Other

authors have also examined fiscal policy in the two-sector Lucas model.  Pecorino (1993) has

conducted a simulation study of commodities taxes.  More recently, Ortigueira (1998) has studied

the effects of labor and capital income taxes on the transitional dynamics and determined a measure

of inefficiency derived from the taxation of capital income.  His analysis is also based primarily on

numerical simulations
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7. Non-Scale Growth Model

As noted, the endogenous growth model has been criticized on both empirical and theoretical

grounds.  We therefore now turn to an alternative model, the non-scale model, which has been

proposed in part in response to these criticisms.  The increased flexibility of the production function

is associated with a higher order dynamics in comparison to the corresponding AK growth model.

Thus, in cases where the AK model is always on its balanced growth path, the corresponding non-

scale model will follow a first-order adjustment path.  The non-scale counterpart to the two-sector

Lucas model, which as we have seen follows a one-dimensional stable locus, now follows a two

dimensional path, and so on.

We start our examination of the dynamics by examining the simplest one-sector non-scale

model, with inelastic labor supply.  The main virtue of this is pedagogic, in that analytical results are

easily obtained.  The two-sector non-scale model, briefly discussed in Section 7.3, is significantly

more complex, requiring that we characterize the transition paths numerically.

Our objective is to analyze the dynamics of the aggregate economy about a balanced growth

path.  Along such an equilibrium path, aggregate output and the aggregate capital stock are assumed

to grow at the same constant rate, so that the aggregate output-capital ratio remains unchanged.

Summing the individual production functions (1a) over the N agents, the aggregate production

function with inleastic labor supply is:

Y l K N AK NK N= − ≡− + −α σ η σ σ σ σ( )1 1 1
(36)

where A l≡ − −α σ( )1 1 , σN ≡ 1 − σ  = share of labor in aggregate output, σK ≡ η + σ  =  share of

capital in aggregate output.  Thus σK + σN = 1 + η  measures total returns to scale of the social

aggregate production function.  Taking percentage changes of (36) and imposing the long-run

condition of a constant Y K  ratio, the long-run equilibrium growth of capital and output, g, is

g ≡ σN (1 − σK )( )n > 0 (37)

Equation (37) exhibits the key feature of the non-scale growth model, namely, that the long-
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run equilibrium rate is proportional to the population growth rate by a factor that reflects the

productivity of labor and capital in the aggregate production function.  Under constant returns to

scale, g = n , the rate of population growth, as in the standard neoclassical growth model, to which

the present one-sector model reduces.  Otherwise g exceeds n or is less than n, that is there is

positive or negative per capita growth, according to whether returns to scale are increasing or

decreasing, η  <
> 0.  In any event, g is therefore independent of any macro policy instrument,

particularly the tax rate.  In contrast to the basic AK model of Section 3.1 where the growth of

output decreases with the tax rate, in the non-scale model, the response to taxes occurs through the

gradual adjustment in k.  We shall show below that as long as the dynamics of the system are stable,

σK <1, in which case the long-run equilibrium growth is g > 0, as indicated.

The implication that long-run growth cannot be sustained in the absence of population

growth has itself been criticized.  Accordingly, an alternative class of non-scale growth models, that

eliminates the effect of country size, but still permits growth in the absence of population growth,

has more recently emerged.  These models permit at least a limited role for government policy to

influence the long-run growth rate, through taxes and subsidies to research and development.19

7.1 Equilibrium Dynamics

To analyze the transitional dynamics of the economy about its long-run stationary growth

path, it is convenient to express the system in terms of the following stationary variables:

c C N k K NN K N K≡ ≡−( ) −( )σ σ σ σ( ) ( );1 1   

With constant social returns to scale [σN + σK = 1] these reduce to standard per capita quantities; i.e.

c = C N = Ci ,  etc. Otherwise they represent "scale-adjusted" per capita quantities.

We begin by determining the consumption dynamics.  To do so we take the time derivative

of (2a) and combine with (4a) to find that the individual's consumption grows at the constant rate:

˙ ( ) ) ( )C C AK K ni i y i i= − − − −( ) ≡−1 11τ σ ρ γ ψσ η (38)

                                                  
19 Examples of the second form of non-scale model include Young (1998), Aghion and Howitt (1998), Dinopoulos and
Thompson (1998), Howitt (1999), and Jones (1999).
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With all individuals being identical, the growth rate of aggregate consumption is ψ = ψ i + n , so that

˙ ( ) ) ( )C C AK N ny
K N= − − − −( ) ≡−1 11τ σ ρ γ γ ψσ σ (39)

Differentiating c and using (46), the growth rate of the scale-adjusted per capita consumption is:

˙
( )

c c
Ak

ny N

K

K

=
−

−
−

−
−

−
+

−




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









−1

1 1 1 1

1τ σ
γ

ρ
γ

γ
γ

σ
σ

σ

(40a)

To derive the dynamics of the scale adjusted aggregate capital stock we take the time

derivative of k and combine with the production market equilibrium condition (4) to yield:

k̇ k Ak
c

k
nK N

K

= − −
−

















−σ σ
σ

1

1
(40b)

The steady-state values of the transformed variables, k̃ and c̃ , are given by

˜
( )

( )
k n

y

N

K

K

=
−

+ + −
−





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

















−
1

1
1
1

1
1

σ τ
ρ γ γ σ

σ

σ

(41a)

˜
( )

( ( ) ) ˜c n k
y

y
N

K

=
−

+ + − − −
−





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















1

1
1 1

1σ τ
ρ γ γ τ σ σ

σ
. (41b)

and we see that the tax rates impinge on the level of activity through ˜, ˜k c .  Note also, that (41a),

(41b) reduce to the standard expressions for the neoclassical model, in the absence of externalities,

when the aggregate production function has constant returns to scale.

Linearizing (40a) and (40b) around steady state, it is immediately apparent that σK <1 is a

necessary and sufficient condition for saddlepoint stability, in which case (37) ensures that the

equilibrium growth rate of output, g is positive.  The stability condition asserts η < σN = 1 − σ , so

that the share of external spillover generated by private capital accumulation, and hence the overall

social increasing returns to scale, cannot exceed the exogenously growing factor's share (labor) in

production.  Thus stability is consistent with decreasing, constant, or even increasing returns to scale,

provided that the latter are not too excessive.

The model we have presented is the direct analogue to the endogenous growth model
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presented in Section 3.1.  In contrast to that model, which was always on its balanced growth path,

the present model involves transitional dynamics, the linearized approximation to which is described

by a first order path.  Thus whereas in the AK model, a tax increase leads to an instantaneous jump

in the price level, in the present model it leads to as gradual decline in the capital stock, with no

impact on the long-run growth rate.

4.2 Optimal Fiscal Policy

Optimal fiscal policy can be easily characterized in this model.  The corresponding first-best

equilibrium in the centrally planned economy, in which the central planner internalizes the

externalities, is described by

˙
( )

c c
Ak

ny N

K

K

=
−

−
−

−
−

−
+

−




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









−1

1 1 1 1

1τ σ
γ

ρ
γ

γ
γ

σ
σ

σ

(40a’)

in conjunction with (40b).  Comparing (40a) and (40a’) we immediately see that the tax rate

τ̂ η σy = − < 0 (42)

will ensure that the decentralized economy replicates the centrally planned economy.  The reason

that the optimum calls for a subsidy is because aggregate capital generates a positive externality that

individual agents fail to take into account.  Furthermore, the simple fixed rule (42) enables the

decentralized economy to mimic the entire optimal dynamic path.  Eicher and Turnovsky (2000)

have extended this model to include alternative specifications of congestion, including (15), and

examined optimal policy in this more generalized model.

7.3 Two-Sector Non-Scale Model

The non-scale model was originally introduced by Jones (1995a), (1995b) in the context of

Romer’s (1990) two-sector model of technological change.  As formulated by Romer, his model had

an acute scale effect in the sense that it implied that doubling of the population and the number of

people engaged in research would double the equilibrium growth rate, a proposition that was clearly
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counterfactual.  Jones introduced decreasing returns to knowledge and showed how this leads to an

equilibrium in which the long-run growth rates in the two sectors, -- final output and technology --

were independent of the size of the economy. Instead, they were functions of the technological

elasticities of production function of the knowledge-producing sector, together with the population

growth rate, and as such, were a direct generalization of (43), the equilibrium one-sector growth rate.

Jones’s analysis was based on the specific assumption of constant returns to scale in the final

output sector in capital and labor efficiency units.  Eicher and Turnovsky (1999a) characterize the

equilibrium growth rates under more general conditions with respect to returns to scale in the two

sectors.  One important conclusion they show is that essentially the only production function

consistent with a balanced growth path under arbitrary returns to scale is the Cobb-Douglas.  Thus,

for example, the CES production function generalized to allow for non-constant returns to scale, is

inconsistent with a balanced growth path.  That is why, we have imposed the Cobb-Douglas

production function throughout.20

Eicher and Turnovsky (1999b, 2001) characterize the transitional dynamics of the two-sector

non-scale model in detail, relying extensively on numerical simulation methods.  They show how the

stable adjustment path, which is a one-dimensional locus in the corresponding endogenous growth

model, now becomes a two-dimensional locus in the two-sector non-scale model.  This is important

for issues pertaining to the speed of convergence.  The basic one-sector neoclassical and model and

the two-sector endogenous growth model both imply speeds of convergence that are generally

viewed as implausibly high, around 10% per annum.

The two-sector non-scale models generally imply much slower rates of convergence.  In a

preliminary examination of this issue, Jones (1995a) obtained excessively slow rates of convergence,

mainly because he assumed that the sectoral allocation of each factor remains constant during the

transition.  Dinopoulos and Thompson (1998) analyze the transition dynamics of the alternative non-

scale model numerically to find that the rate of convergence is approximately equal to the rate of

population growth, but they do not highlight separate transition paths of output, capital and

                                                  
20 The existence of a balanced growth equilibrium is consistent with an arbitrary production function if and only if it has
constant returns to scale.  Eicher and Turnovsky also show that a balanced growth path may arise under a nonconstant
returns to scale production function provided it is of a specific homogeneously separable form.
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technology.  Eicher and Turnovsky (1999b) show how the empirical findings regarding the

differential rates of convergence of output and technology can be reconciled by introducing a two-

sector non-scale model of capital accumulation that incorporates endogenous technological change

and population growth.  Their key contribution is to show how the stable transition path in the two-

sector non-scale growth model is characterized by a two-dimensional stable saddlepath, which

permits the growth rates and the convergence speeds to vary both across time and variables.  The

presence of a two-dimensional stable manifold introduces important flexibility to the convergence

characteristics, by allowing capital, output, and technology to converge at different time-varying

rates toward possibly different long-run equilibrium growth rates.  These properties are consistent

with Bernard and Jones (1996a, 1996b) who show that different sectors exhibit distinctly different

convergence time profiles, suggesting that the process of convergence is more complex than

indicated by changes in any single aggregate measure.  Furthermore, they show that reasonable

asymptotic convergence speeds are achieved with a wide variety of parameter values.

8. Concluding Comments

In this paper we have discussed some of the recent theoretical developments in growth

theory, tying them to the earlier growth theories.  We have done this by setting out a basic generic

model, we have shown how it may yield two of the key models that have played a prominent role in

the recent literature on economic growth theory, the endogenous growth model and the non-scale

growth model.  We focused initially on the former, emphasizing how the simplest such model leads

to an equilibrium in which the economy is always on its balanced growth path.  We have also shown

how the endogeneity or otherwise of the labor supply is crucial in determining the equilibrium

growth rate and the responsiveness of the equilibrium growth rate to macroeconomic policy.

But transitional dynamics are an important aspect of the growth process and indeed, much of

the recent discussion of convergence concerns the speed with which the economy approaches its

balanced growth path.  We have discussed alternative ways that such transitional dynamics may be

introduced.  Within the endogenous growth framework this occurs naturally through the introduction

of a second capital stock and two such examples have been considered.  The first is the introduction
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of government capital in the one sector model, and the second is the two-sector production model,

pioneered by Lucas (1988), in which the two capital goods relate to physical and human capital.

As we have noted, the endogenous growth model has been the source of criticism, leading to

the development of the non-scale model.  This too is characterized by transitional dynamics, which

are more flexible than those of the corresponding endogenous growth model.  But the fact that the

long-run growth rate is independent of policy in such models does not mean that policy is

unimportant.  On the contrary, since such models are typically associated with slow convergence

speeds (of the order of 2-3%) policy can influence the accumulation of capital for extended periods

of time, leading to significant long-run level effects.

We observed at the outset that our discussion is necessarily limited and restricted.  We have

focused entirely on models where the growth occurs through capital accumulation, emphasizing

particularly the role of the technological conditions.  We have not addressed issues pertaining to

innovation and technology transfer and the related issue of the indigenous development of

technology for which the knowledge-based models of Romer (1990), Grossman and Helpman

(1991), Eicher (1996), Aghion and Howitt (1998) are particularly relevant. Moreover, our analysis

has been restricted to real aspects, and one can also introduce monetary aspects, including inflation

and monetary policy.  Some work along these lines has been carried out by Palivos and Yip (1995)

and others.

As one sorts through the growth literature over the last half century, one sees striking

parallels between the old and the new.  The structures have many similarities; it is the methods of

analysis that are changing, and presumably becoming more sophisticated.  The AK technology of the

basic one-sector Barro-Rebelo endogenous growth model is identical to that of the Harrod-Domar

model.  Furthermore, the equilibrium rate of growth in the AK model can be expressed as the

product of the savings rate and the output capital ratio, and is identical to Harrod’s warranted growth

rate.  Moroever, the rigidities that were associated with the Harrod-Domar technology, and led to the

development of the Solow-Swan neoclassical model, have their parallels in the more recent

literature.  The scale effects identified with the constant returns to scale in innovation in the Romer

model led to the more flexible specification of technology in the Jones non-scale model.  But this



40

model is just an extension of the Solow-Swan neoclassical model to allow for deviations from

returns to scale.  Imposing the assumption of constant returns to scale gets us right back to the

neoclassical framework.  What is new here is the endogeneity of technology and the more serious

effort devoted to trying to reconcile the theoretical models with the empirical facts, although that too

was important in the early work.
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