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Abstract

Beginning with Romer (1990), a first generation of endogenous R&D growth models with

expanding variety or growing quality of intermediate inputs had a scale effect of R&D employment on

productivity growth. C. Jones (1995) criticises this class of models on the ground that their prediction is

widely at variance with the facts of R&D employment and productivity growth in the advanced

countries over the last fifty years. He suggests a model which shares important features with Arrow’s

(1962) seminal paper on learning by doing. Growth is not endogenous, but, if population is growing, per

capita output may persistently increase as a result of purposeful research effort, due to increasing

returns to scale in the output sector.

More recently, a second generation of endogenous R&D growth models has appeared, in which

the scale effect is eliminated and the simultaneous expansion of intermediate goods variety and quality

occurs under conditions that make steady-state productivity growth depend on the ratio between

intensive R&D employment and total employment (Young (1998), Peretto (1998), Howitt (1999)).

A unifying formal classification of the different types of R&D growth models is used in this

paper to discuss how they face with the fact that not only R&D employment, but also the R&D

employment share has risen dramatically in the advanced countries over the last fifty years. Depending

on the model at hand, reconciling this fact with the facts of productivity growth requires different

changes in the parameters that describe the ‘production function of knowledge’. We try to characterise

such changes and discuss their plausibility in the light of the literature on patents and productivity.

* Preliminary draft (not to be quoted) of the paper to be presented at the Conference: “Old and New Growth Theories:
An Assessment”, University of Pisa, 5 – 7 October 2001.
1 E-mail: caminati@unisi.it. Financial support from the Italian MURST is gratefully acknowledged.
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1. Introduction

The ratio between the number of scientists and engineers engaged in research and

development (R&D) and the level of total employment has increased dramatically in the U.S.A. and

the advanced countries more generally in the second half of the twentieth century. Let us call this
ratio (1 − hL), where hL is the ratio between employment outside of R&D and total employment. In

the U.S.A. (1 − hL) was nearly three time as large in 1995 than it was in 1950, with a pronounced

upward fluctuation in the period 1960-1970 due to government-funded R&D. Jones (2000)

estimates that from 1950 to 1995 an even larger rise of the researchers/employment ratio has been

observed in the set of G-5 countries (France, West Germany, Japan, the United Kingdom and the

United States). Although the numbers involved are very small (the level of the ratio is in any case

quite close to zero), so that the time series is more exposed to indivisibility effects and measurement
errors, the rise of (1 − hL) is highly systematic within the period and must be taken seriously.

It is quite striking how the observed dramatic rise of R&D employment did not show up in

the productivity figures. As is well known, the growth rate of GDP per hour tended to decline in

the advanced countries after the ‘golden age’ 1950-1970. The decline was less pronounced in the

U.S.A. because this country did non enjoy the outburst of productivity from technological catching

up after the second world war. For this reason the U.S. experience  provides a more telling

indication of the relation between R&D effort and productivity growth for a country located on the

frontier of technological knowledge.

With the U.S. experience in mind, we shall refer to the stylised fact (a) of a large rise of the

researchers/employment ratio and to the stylised fact (b) of  a relatively constant (if compared to

the rise mentioned under (a)) growth rate of GDP per hour in the second half of the twentieth

century (on average 0.02 from 1950 to 1993)2. In the same period, the U.S. capital/output ratio and

rate of interest showed an approximately horizontal (again, if compared to the rise under (a)) trend.

If we ask ourselfs how the facts (a) and (b) can be reconciled, two candidate explanations

come to mind.

(i) There has been a fall in the average effect of innovations on measured

productivity. This may be at least partly due to the fact that official statistics

underrate the qualitative changes in goods and the improvement in their service

characteristics (Nordhaus (1997)). Alternatively, or in addition to the previous

cause, it may be the case that the rising well being associated with the rising per-

capita income makes it increasingly difficult to produce the same proportional

improvement in the service characteristics of goods. Hence, the productivity gain

tends to fall in the more recent innovations. Robert Gordon (2000) compares the

2 See, for instance, Jones (2000).
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effects on well being of the ‘new economy’, to those produced by the great

innovations during the second industrial revolution. He concludes that the effects

of the former do not bear comparison with those of the latter.

(ii) A different, but compatible, line of explanation is a fall in the average productivity

of R&D labour, as measured by the number of innovations per unit of research

effort. A fall of this kind has certainly taken place, if the number of innovations is

measured through the number of patents, granted or applied for (Griliches (1988),

(1990)). Measures of this type are strongly biased not only by changes in the

‘productive capacity’ of institutional patent agencies (e. g. the U.S. Patent Office),

but also by changes in the propensity to apply for a patent. Microeconomic

studies (Lanjow and Schankermann (1999)) indicate that a lower fall of the

productivity of R&D labour is obtained if the aggregate innovation output is

obtained by weighting patents by means of indicators of their technological and

economic importance. This is related to point (i) above.

The question discussed in this paper is how the R&D models developed within the recent

revival of general-equilibrium-growth theory meet with the qualitative evidence presented above3. A

similar question was addressed in an influential paper written by C. I. Jones and published in 1995.

Jones observed how the R&D growth models developed to that date displayed a ‘scale effect’ of the

number of researchers on the growth rate of GDP per-capita. These models are criticised by Jones

because the ‘scale effect’ is in striking contrast with the evidence. In the same paper he builds a

model, which he defines semi-endogenous, where innovations are still the outcome of purposeful

and costly R&D effort, but the steady-state growth rate of output per capita is completely

determined by the technological parameters and the rate of growth of population. It is therefore

independent of the level of population, of preferences, and of policy variables that do not affect

technology. The family of R&D growth models with these properties is called here non-

endogenous. By contrast, the endogenous R&D models of general-equilibrium growth are those

where per-capita GDP growth depends upon preferences and/or policy variables generally.

The basic structure of the endogenous and non-endogenous general-equilibrium models of

economic growth is discussed in part 2, 3 and 4 of this paper.

Partly as a reaction to Jones’ critique, a second generation of endogenous R&D growth

models has appeared in the late 1990’s. In this second generation, beside ‘intensive’ innovations

that increase the productivity of the intermediate good produced in their sector of application, there

are ‘extensive’ innovations, that increase the number of intermediate goods. In steady-state

equilibrium, the number of intermediate goods (hence of sectors) grows at the population growth

rate n, so that, in steady state, the number of intensive-researchers per sector is constant. This

3 We shall not consider other families of models where growth is likewise driven by innovations, even less the huge
microeconomic literature on R&D.
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implies that the ‘scale effect’ on the rate of growth disappears. In other words, there is a dilution of

the ‘scale effect’ across the growing number of intermediate-good sectors.

A moment reflection reveals that the steady-state predictions of the second-generation

endogenous and also of the non-endogenous R&D growth models are still in striking contrast with

the evidence presented at the beginning of this introduction.

The dramatic long-term rise of the R&D employment share (1 − hL) reveals that the long-

term growth path of the U.S. economy can not find a theoretical approximation through the

hypothesis that the economy has been growing in the neighbourhood of a single steady-state path4.
Perhaps, the observed long-term rise of (1 − hL) and the approximately constant rate of productivity

growth are more consistent with the hypothesis of a sequence of transitions between different

steady-state equilibria induced by  a sequence of exogenous parameter changes. This issue is

addressed in section 5.1 of part 5. Our conclusion here is that the non-endogenous model is more

easily reconciled with the above interpretation of the evidence than the endogenous model, but the

parameter change required to explain fact (a) above may be unplausibly large, at least in some range

of the preference parameters.

In section 5.2, which hints at possible directions for future research,  we broaden the scope

of our view, in that the long-term rise of the R&D employment share is likened to the long-term fall

of the agriculture employment share, or to the subsequent fall of the employment share of

manufacturing industry in favour of services. We ask whether suitable modifications to the basic

structure of the R&D general-equilibrium models of economic growth may move some steps

towards a better understanding of the systematic association between growth and the composition

of employment, hence, between growth and structural change.

An important caveat must be added. In what follows, the rigid supply orientation of the

general-equilibrium models of economic growth is taken for granted and is not questioned. This is

not because the author is not aware of the biases that are introduced when co-ordination problems

(and effective-demand problems among them) or the stability of general equilibrium in the

disequilibrium dynamics are disregarded. These important issues are simply outside the scope of

this paper. Still, in reading it, it is best to bear in mind what is implied by the seminal work by

Jacob Schmookler on innovation and growth: the interest in the causes of the long-term growth of

GDP per capita, as distinguished from the GDP level, is at best only a partial justification for the

rigid supply orientation of general-equilibrium growth models.

The gist of this paper, beside its attempt at a unifying representation of the R&D growth

models, is that steady-state dynamics, or more generally the hypothesis that growth paths can be

approximated through a sequence of transitions between different steady states, are not adequate to

4 By definition, on a steady-state path the growth rate of every variable is constant for ever. Sins the employment
shares are bounded between zero and one, their unique admissible steady-state growth rate is zero.
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reconcile model predictions with the facts (a) and (b) above. For this reason our focus is always on

steady state results. In general-equilibrium models with a multiplicity of endogenously accumulating

factors (that is, factors accumulating as the result of purposeful investment)  the existence of equilibria

not converging to a steady state can not be always ruled out (Eicher and Turnovsky (1999a),

(1999b)). In what follows the endogenously accumulating factors are capital K, intensive technical

knowledge A and extensive technical knowledge N. To the best of my knowledge, a general analysis

of the transition dynamics for models of this type is still lacking5.

2. A unifying representation of technology

In what follows we build a framework which embeds different views of the relation between

output growth and the generation of new inputs, as may be encountered in R&D growth models.

This is done under a number of simplifying assumptions about technology that still enable us to

discuss usually neglected issues, such as the role of complementarities and the relation between

technological compatibility and knowledge spillovers. The main simplifying assumption is that the

service characteristics of final output Y are unchanged throughout, that Y can be either consumed or

accumulated in the form of capital and that it is produced by means of intermediate goods and

labour. The number of available intermediate goods Nt changes through time as a result of innovation

activities.

Assume the number of service-characteristics types that exist in nature is finite. An
intermediate good is a couple (v, Av) ∈  R+

2. v is the intermediate-good variety, which identifies a

class of functions performed by the good, that is, a composition of the associated flow of service

characteristics. For instance, a particular oil may serve mainly as a propeller, but partly also as a

lubricant. Av is the technological level, or generation, to which (v, Av) belongs. In principle, we

should expect that Av has only an ordinal meaning, possibly with the further ordinal implication that

later generations of a variety are also more productive. This is not, however, the interpretation we

find in the new-growth literature, where Av is an index leading to a cardinal productivity measure.

The marginal product of (v, Av) is a known time-invariant function of Av (and possibly other

variables). This leads to a time invariant production possibility frontier, describing the productive

potential of every possible present and future combination of intermediate goods.

5 Peretto (1998) reports on the transition dynamics of an R&D growth model where the endogenously accumulating
factors are only A and N. In the transition dynamics results of Aghion and Howitt (1998), pp. 109-115, the
endogenous factors are A and K.
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2.1 Production  of material goods

Final output Y is produced by means of intermediate goods and labour by perfectly

competitive firms, which, individually, face constant returns to scale. Following the R&D growth

literature, we introduce a set of simplifying assumptions implying that at every date t only the

highest (and latest) available technology level Av, t  of each variety v is used. This will be the case

since the value of the productivity gain from using the latest generation of a given variety invariably

dominates the cost differential associated with the same choice.

The assumption is not fully realistic. Even granting that Av amounts to a productivity index,

we should in general expect that the flow of service characteristics associated with (v, Av) depends

upon the type and quantity of other intermediate goods with which (v, Av) co-operates within a

production activity6. If there are strong complementarities between different intermediate goods, it

may be the case that the best-practice technology level of variety v at t may not be the highest

available. Compatibility constraints may in fact imply that it is inefficient to use in the same

activity very distant technology levels of complementary varieties. Complementarities of his sort

are simply ruled out in the R&D growth models.

In fact, these models assume a particular substitutability relation between intermediate

goods, to the effect that they enter the production function in an additively separable form.

Recalling our simplifying assumptions, the individual production function is:

Yt = Nt
γ LY,t

1 − α [ ∫
=

Nt

v 0
Av, t xv ,t

α ∂v] (1)

where xv is a quantity of the intermediate-good variety v and is LY labour employment in the

production of final output. Thus, the marginal product at t of the intermediate good (v, Av, t) is:

Nt
γ LY,t

1 − α Av, t
υ xv ,t

α  − 1

It is independent of the inputs of the other intermediate goods, although it may depend, if γ ≠ 0 , on

the total number of intermediate goods cooperating with it.

Intermediate goods are produced by local monopolists through a different set of activities.

The reason why firms in the intermediate-good sector can not be perfectly competitive is quite

robust (Arrow (1987) and (1998), Romer (1990)). The right to produce a new intermediate good

involves an innovation cost that represents a fixed cost, because once the knowledge to produce a

unit of a new good is acquired, it can be applied to the production of an indefinite number of units.

6 If there are production externalities, this service flow may also depend upon the intermediate inputs participating in
other production activities.
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If intermediate-goods production is otherwise subject to constant variable costs, we are faced with a

clear case of increasing returns.

The input of the activity for producing one unit of (v,Av) is a quantity of  capital K which

depends positively on the technology level Av. To fix our ideas, K units of capital invested in the

production of good (v, Av ) give rise to K/Av
ω units of this good, where ω > 0, thus implying that

more capital intensive methods are required to produce intermediate goods of a later generation. For

the sake of later reference we write:

Kv, = xv Av
ω (2)

Howitt (1999) adopts a similar increasing-capital-intensity assumption and claims that capital used

in intermediate-goods production can be interpreted as human capital. The above specification

implies that  the average and marginal cost, in terms of final output, of producing (v, Av) is r Av
ω ,

where r is the rental price of capital. Since we abstract from depreciation, r is also the rate of

interest.

The monopoly output xv, t of variety v is:

xv, t = α2 /(1 − α ) Nt
γ / (1 − α ) LY,t rt

1 / (α  − 1) Av, t
(1 − ω) / (1−α) (3)

The monopoly profit from producing xv, t is:

πv, t = α(1 − α) Nt
γ  LY,t

(1−α) Av, t  xv, t
 α (4)

1 > ω implies that monopoly output is positively related to the technological advance Av,t.

Aghion and Howitt ((1998), chap. 12) and Howitt (1999) obtain a monopoly output which is
uniform across varieties and independent of A, by imposing  ω = 1. We hold to the latter simplifying

assumption to obtain:

xv, t = α2 /(1 − α) Nt
γ / (1 − α) LY,t rt

1 / (α  − 1) = x t (5)

In equilibrium, final output Y is then:

Yt = Nt
γ  LY,t

1 − α Nt A t x,t
α = α2α  /(1 − α) Nt

 (1 − α  + γ) / (1 − α) LY,t rt
1 / (α  − 1) A t (6)

Where A t is the average technology level across intermediate goods:

A t = 1/Nt [ ∫
=

Nt

v 0
Av, t  ∂v] (7)
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An equivalent equilibrium expression of Yt is obtained by observing that, if hK is the capital

share employed in material, as opposed to knowledge, production, it must be the case that, in

equilibrium we have (hK,, t Kt) / At = Nt xt. Hence:

Yt = Nt
γ (hL, t Lt)

 1 − α Nt
1 − α At

(1 − α) (hK, t Kt)
α (8)

It is then clear how the assumption γ = α − 1 (see, for instance, Aghion and Howitt (1998),

chapter 12) sterilises the effects of the growing number of varieties on final output, which result

from the additively separable way in which the single varieties enter the production function. Where
these effects are not sterilised, because  (1 − α  + γ) > 0, we observe that the production function

corresponding to a constant technology level contains a form of increasing returns due to

specialisation, as measured by N. The best known example along these lines is probably Romer
(1990), which assumes γ = 0.

 Recalling that in steady state the rate of interest is constant, and the labour and capital

shares employed in the (final and intermediate) output sector are also constant, equation (5) yields

the steady-state-growth equation:

gY = gL + [(1 − α + γ)/(1 − α)] gN. + gA (9)

where gi is the proportional instant rate of change of variable i. In particular, if following Romer
(1990) we impose the restrictions γ = 0 and gA = 0 , the above relation boils down to gy = gL + gN ,

where it is apparent that the growth rate of per-capita output is simply the growth rate in the

number of specialised varieties.

2.2 Production of knowledge

2.2.1 Intensive innovations

 An intensive innovation in sector v arriving in the interval t + ∂t is the stochastic outcome of

the innovation effort performed at t in this sector. The innovation contributes to shifting the

technology frontier according to

˙
,At Max  = (δ / Nt) At Max (10)

and brings Av, t to the shifted frontier. Thus, access to the frontier technology level is available, but

not costless, to every successful intensive innovator operating in sector v. The knowledge increment
has elasticity +1 with respect to At Max and elasticity − 1 with respect to the number of sectors in

the economy (Aghion and Howitt (1998), chap. 12). The idea is here that the higher the number of

sectors, the lower the impact of an innovation in sector v on the technology frontier.
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The Poisson arrival rate of an intensive innovation in sector v at t is:

φv, t = λ (uL, v, t Lt)
θ (uK, v, t K t)

ξ At Max
χ (11)

where ξ > 0, θ > 0, λ is a constant, uL, v , uK, v are the fractions of total labour and capital invested in

intensive R&D on variety v.

The returns offered by the investment of rival-resources in intensive R&D are constant or
decreasing, depending on θ + ξ = 1 (Barro and Sala-I-Martin (1995), chap. 7), or θ + ξ < 1. The

second case arises if there is a congestion effect on the returns to R&D investment (Stokey (1995),

Howitt (1999)), with the result that the larger the rival resources invested in research, the higher the

probability that independent innovation efforts produce the same outcome.

The parameter χ  is meant to capture how the arrival rate is affected by the frontier

knowledge stock At Max. There are two main forces at work here and which act in opposite
directions. Thus, we may split the parameter χ into two components:

χ = χ1  + χ2.

χ1 is the so called ‘complexity effect’: more advanced technology levels are progressively

more difficult to discover as a result of the increasing complexity of the search activity. Thus, we
have χ1 < 0. This is the assumption we find in a number of search-theoretic models of R&D-based

economic growth (Jovanovic and Rob (1990), Stokey (1995), Kortum (1997)). Realistic as it may

be, the positive the correlation between the technology-frontier index and the difficulty of search

must be simply assumed and can not find a micro foundation within a formal framework which does

not lend itself to consider the feed-back of innovations on the complexity of the search space.

The parameter χ2 > 0 captures the “standing on giants’ shoulders” effect7 (Caballero and

Jaffe (1993)), which postulates that a higher frontier knowledge increases the probability of

invention because an investment in intensive R&D creates the opportunity to exploit a knowledge

spillover from the technology frontier to the innovators. This positive influence of knowledge on

the innovation-success probability is distinct from and indeed adds to the influence of the stock of

ideas on the size of the knowledge shift, which takes place if the innovation arrives (see (7) above).

To this extent, it is unclear what are the grounds for assuming that the giants’ shoulders effect is

positive and is close in absolute magnitude to the complexity effect. We shall see nevertheless that
the restriction χ  = χ1  + χ2 = 0 (or other equivalent condition) is characteristic of the R&D

endogenous-growth models.

The main simplifying hypothesis introduced with (8) is that the success probability of

intensive R&D on variety v is independent of the distribution of the local stocks Av, t. Together with

(7) this implies that the intensive research effort and the arrival rate are uniform across sectors.

7 Cf. Merton (1965).
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Other formulations (see, for instance, Barro and Sala-I.Martin (1995), chap. 7) relate the complexity

effect and the giant’s shoulders effect for sector v to the local stock Av, t. The same property of a

uniform equilibrium arrival rate is however imposed also in this case, by means of ad hoc

restrictions introduced to this end.

Since intensive R&D is performed independently by the N sectors, the aggregate rate of

intensive innovations is deterministic and equals

Ntφv, t = Nt λ (uL, v, t Lt)
θ (uK, v, t K t)

ξ At Max
χ (12)

Recalling (7),and the fact that the equilibrium research effort is uniform across sectors, we

obtain that the overall shift of the technology frontier at time t  resulting from the intensive R&D in

the N sectors is:

˙
,At Max  = δ λ (uL, t Lt / Nt)

θ (uK, t K t / Nt)
ξ At Max

χ + 1 (13)

where uL and uK are the aggregate labour and capital shares invested in intensive R&D.

2.2.2 Extensive innovations

An ‘extensive’ innovation is the introduction of a new variety v. On the assumption that

there is an external effect such that the technical knowledge in the economy affects the technology

level of a new variety, a-not-too-unplausible restriction is that the technology level distribution of a

new variety corresponds to the technology level distribution across the existing varieties (Howitt

(1999)). This implies that extensive innovations at t do not affect the average technology level in the

economy At. An assumption to the same effect is that new varieties arriving at t have a deterministic

technology level At (Peretto (1998)).

We assume that the extensive innovation effort is related to the creation of new varieties by

the deterministic law:

•
N

t = β (zL, t Lt)
 εN t

 τ (zK, t Kt)
 ψAt

 ν ≡ φN, t (14)

β  is a constant, zL is the fraction of total labour employed in extensive R&D. We impose the

restriction ε > 0, ψ > 0, τ ≥ 0. The case ε + ψ < 1 indicates that there are decreasing returns with

respect to the scale of the rival resources invested in extensive search. The restriction is referred to
as the ‘congestion hypothesis’. A positive τ  bears the interpretation that a higher number of

varieties amounts to a wider knowledge base in the economy as a whole and therefore facilitates the

discovery of yet new varieties. If this is in itself quite plausible, far more questionable appear to be
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‘point restrictions’ such as τ  = 1, or τ  = 0,  as may be found, for instance, in the pure variety-

extension model of Romer (1990) and in Peretto (1998), respectively.

The parameter ν indicates how the production of an extensive innovation flow 
•
N  of

technology level A is related to the size of the average technology index A. ν = 0 (Peretto (1998))

states that the cost (in terms of rival resources invested in extensive R&D) of producing a given

innovation flow 
•
N  with average technology level A is independent of A. If ν > 0 ( < 0) this cost

would be decreasing (increasing) in A. The restriction ν > 0 fits with the idea that the growth of

technical knowledge along the quality dimension goes hand in hand with a growing ‘complexity’ of

technology, which has a positive effect on the ease with which new varieties are discovered. As

before, since the present framework cancels from view the rising complexity of the technology

space, the treatment of this feature can be at best evocative.

3. Steady-growth equations

A steady state, or balanced-growth path, is a particular constant-growth path such that the

growth rate of every variable is constant for ever. Since the factors employment shares can not exit

the interval [0, 1], the definition immediately implies that the growth rate of such variables is zero

on a balanced path.

The assumptions of section 2.2 imply that the ratio (At Max / At) converges to (1 + δ)8.

Assuming that convergence has already taken place, (13 ) is written:

Ȧt  = δ λ (uL, t Lt / Nt)
θ (uK, t K t / Nt)

ξ At 
χ + 1 (15)

Recalling that on a constant-growth path Ȧt and At grow at the same rate, using (8), (14) and

(15) we write the steady-state growth equations:

gA  [− χ] + (ξ + θ) gN − ξ gK  = θ n  (16)

−ν Ag + (1 − τ) Ng − ψ Kg   = ε n (17)

−(1 − α) Ag −  (γ + 1 − α) Ng  + Kg  (1 − α) =  (1 − α) n (18)

If we define the variables k ≡ K/N, l ≡ L/N, so that gK = gk + gN , n = gl + gN , (16) – (17) –

(18) yield the following system:

8 Cf. Aghion and Howitt (1998), p. 412.
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3.1 Endogenous R&D growth

Let [I − Γ ] be the square matrix in the left-hand-side of (19). If [I − Γ ] has a non zero

determinant, the steady-state growth rates of A, N and K are fully determined by equations (19),
hence by technology, given the exogenous growth rate of population. Thus Det [I − Γ] ≠ 0 states

that preferences do not have any bearing on the speed of steady-state growth and policy measures

by a government are equally uneffective, unless they are able to affect the technological parameters.
It is then apparent how the crucial assumption of the endogenous R&D growth models is Det [I −
Γ] = 0. In this case the coefficients in (19) are linearly dependent and additional equations are

necessary to determine the steady-state growth rates of the variables. One missing equation is

derived from the firs-order conditions associated to the utility-maximisation problem:

Max
c

e tt

t

n t: ( )
1

0

1
1

−

=

∞
− −−

−∫ ∂
σ

ρ

σ

subject to the flow budget constraint that per-capita consumption at t ct is not negative and is
constrained by wage and interest income minus the accumulation of stocks at t9. ρ  is the rate of

time preference and (1 / σ) is the constant inter-temporal elasticity of substitution.

In particular, the proportional growth rate of ct must satisfy:

gc(t) = (rt − ρ) / σ

where c is per capita consumption,  Obviously enough, in steady state n + gc = gY = gK .

The restriction  Det [I − Γ ] = 0 may be of course introduced in a number of ways. The

standard practice of endogenous growth models with intensive R&D is to postulate the special case:
χ = 0 and ξ  = 0 (see, for instance, Grossman and Helpman (1991), Aghion and Howitt (1992),

Howitt (1999), Peretto (1998), Young (1998), Barro and Sala I-Martin (1995), chapter 7). This

yields:

Ȧt / At = δ λ (uL,, t Lt / Nt)
θ (20)

As is also revealed by the first equation of system (19), with χ = ξ = 0, consistency with steady

state requires gN = n, that is, gl = 0. In particular, in the models where extensive innovations are not

contemplated, so that N is constant, it is assumed that L is also constant and there is a scale effect of

9 Cf. Barro and Sala-I-Martin (1995), charter 2.



13

the intensive-research employment level on the growth rates of A and Y. This occurs in the pure

quality expansion model of Aghion and Howitt (1992) and Barro and Sala-I-Martin (1995) (chapter

7). Jones (1995) draws the attention on the lack of empirical corroboration for the hypothesis of a

scale effect on the growth rate. In models with a growing population, equation (20) is reconciled

with the lack of any scale effect on the steady-state rate of growth, by introducing special

assumptions which make sure that L/N is constant (Howitt (1999)), or at least converges to a fixed

steady-sate value (Peretto (1998), Young (1998)). With a simplified specification of equation (14)
such that ν = 0 and ψ = 0, the required restriction is:

 τ + ε = 1.

This implies:

Ṅ t / Nt = β zL, t
ε (Lt / Nt)

 ε (21)

and using the steady-state condition  gN = n, this yields

 m zL = (n / β)1/ε (22)

where m is the steady state value of L/N.

We now look at two different sets of steady-state solutions of the endogenous model, as

specified above, which correspond to the possibility that: (i) the costs of one additional unit of

labour effort invested in extensive or intensive R&D are identical; (ii) these costs are not identical.

We shall proceed under the simplifying assumption γ = α − 1 (see equation (18)), so that gK

= gA + n. Thus:

gc = gA = (r − ρ) / σ (23)

3.1.1 Identical opportunity cost of effort in extensive and intensive R&D

Suppose the only cost of one additional unit of labour effort in extensive or intensive

research is the forgone opportunity of obtaining the wage rate w by selling that unit in the labour

market. This implies that the private instantaneous marginal returns from innovation effort in

intensive and extensive R&D must be identical and equal to the wage rate w. With our production

function (8) we have:

w = (1 − α)hL
− α  qαA (24)

where q ≡ K/AL.
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[φv, t / (uL, v, t Lt)] Vv, t  = λ (uL,, t L t / N t )
θ − 1 V t = wt =  [φN t /(zL, , t Lt)]VN,  t = β (zL, t L t / N t)

 ε − 1 VN,  (25)

where Vv, t  = V t is the expected value of a quality innovation in any sector v at time t, and VN,  t is the

expected value of an extensive innovation at time t.

Let v t ≡ V t / A t, Max and v N, t ≡ V N, t  / A t ; in words, v t and v N, t are the productivity adjusted

values at time t of an intensive and extensive innovation, respectively.

From (24) and (25):

v t = [(1 − α) / λ(1 + δ)] hL
− α  qα (uL,, t L t / N t )

1 − θ (26)

v N, t = [(1 − α) / β] hL
− α  qα  (zL, t L t / N t)

 1 − ε (27)

Moreover, one obtains the asset equations10:

∂ v t / ∂t = [r t φ t] v t − π t (28)

∂ v N, t / ∂t = [r t φ t] v N, t − π t (29)

where π t  is the productivity adjusted profit of a local monopolist and it is worth recalling that,

since an extensive innovation will be displaced by an intensive innovation in the same sector, the
expected obsolescence rate takes the same value φ t for extensive and intensive innovations.

Differentiating (26), (27) with respect to time and imposing the steady-state restrictions gN

= n, ˙ , ˙ , ˙ , ˙h z u qL L L= = = =0 0 0 0  we obtain that ∂ v t / ∂t = ∂ v N, t / ∂t = 0. Thus, (28) and (29) imply

the steady state condition:

π t /v t = π t / v N, t (30)

which can be written v = v N , or, equivalently,.

(1 + δ) λ uL,
 θ − 1 m θ  = β zL

ε − 1 m ε (31)

Using (20) and (22) we obtain:

gA = λδ uL,
 θ  m θ =   λδ (uL, / zL,)

 θ (n/β)θ / ε (32)

From (20) and (31):

gA =  [δ / (1+ δ)]n (uL, / zL,) (33)

This yields:

10 Cf Aghion and Howitt (1998), p. 109-110.
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(uL, / zL,) = [(1 + δ) λ n(θ − ε) / ε β− θ / ε]1 / (1 − θ) (34)

gA = δ [(1 + δ)θ  λ n1 − ε  β− θ / ε ] 1 / (1 − θ) (35)

In the special, but convenient case θ = ε (34) and (35) simplify to:

(uL, / zL,) = [(1 + δ) λ  β− 1 ]1 / (1 − θ)                     (34’)

gA = δ n [(1 + δ)θ  λ   β− 1] 1 / (1 − θ)             (35’)

Thus we reach the striking conclusion that in the endogenous model as specified above, an

identical marginal innovation cost for intensive and extensive R&D makes (uL, / zL,) and gA depend

only on technological parameters. Instead, the steady-state shares uL, , zL, and hL depend also on the
preference parameters ρ and σ. In particular, for θ = ε we have :

zL, = { [(ρ+αn) / αn]  +  [(1 + δ)λ / β]1 / (1 − θ)  [1 + (σδ + 1) / α(1 + δ) ]}− 1 (36)

The reason why the model is still qualified to be called endogenous is that a policy variable

such as an innovation subsidy (see Aghion and Howitt (1998), p. 419) would affect the rate of

growth, if it exerts an asymmetric influence on the cost from one additional unit of labour effort in

extensive and intensive R&D. To understand this point, it is worth considering the case below,

where the cost asymmetry does not arise from a policy variable, but from a slight generalisation of

the innovation technology considered above.

3.1.2 Asymmetric innovation cost

Suppose that every unit of  labour invested in R&D at time t is combined with a  quantity of

capital At, Max TA , in the case of intensive R&D and At TN in the case of extensive R&D. In this
section we assume  TN  ≠ TA . In other words, labour and capital are perfectly complementary

inputs to innovation activities, intensive and extensive,  but the ratio between the two inputs is

different in the two set of activities, even after adjustment is made for the productivity levels At, Max

and At. The case TN  = TA yields conditions identical to those obtained in the previous section, with

the understanding that the terms K and q must be everywhere replaced with hKK and hKq, where hK

is the fraction of total capital employed in the output sector (to produce intermediate goods). uK

and zK are the fractions of total capital employed in intensive and extensive R&D, respectively.

With this notation:

wt = (1 − α) hL, t
− α  hK, t

 αqt
αA t
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rt =  α2 hL, t
1 − α  hK, t

 α  − 1qt
α  − 1

uK, t = (1 + δ) uL, t q t
 − 1TA

zK, t =  zL, t q t
 − 1TN

hK, t = 1 − uK, t − zK, t

Condition (25) is now replaced by:

λ (uL,, t L t / N t )
θ − 1 V t = wt  + rt At, Max TA (37)

β (zL, t L t / N t)
 ε − 1 VN,  t = wt  + rt At TN (38)

(26) and (27) are replaced by :

v t = [1 / λ(1 + δ)]  (uL,, t L t / N t )
1 − θ hL, t

− α hK, t
 α  q t

 α[(1 − α) + α2 hL, t 
 hK, t

 − 1q t
 − 1TA ] (39)

v N, t = [1 / β] (zL, t L t / N t)
 1 − ε hL, t

− α hK, t
 α  q t

 α[(1 − α) + α2 hL, t 
 hK, t

 − 1 q t
 − 1TN ]             (40)

Recalling that in steady state v = vN, and assuming for simplicity θ = ε, we obtain:

uL  / zL = {λ(1 + δ) [(1 − α) + α2 (r/α2)1/(1 − α) TN ]/ β [(1 − α) + α2(r/α2)1/(1 − α)TA ]} 1 / (1 − θ)

It turns out that uL  / zL is related to the steady-state rate of interest, which depends on the
preference parameters ρ and σ. In particular, it can be easily checked that the sign of ∂(uL  / zL) / ∂r

is positive if TN −TA >0 and is negative if TN −TA < 0. Moreover, using the fact that (32) holds also

in the present case, we can see how similar considerations apply to the relation between gA and the

rate of interest. In fact, given n, gA and r are simultaneously determined by technology and
preferences and the relation between them depends on the sign of TN −TA ≠ 0. If  TN = TA the

simultaneity collapses and gA is determined by (35’).

3.2 Non endogenous R&D growth

Referring back again to system (19), the crucial assumption of the non-endogenous R&D

growth models is Det [I − Γ] ≠ 0. In particular, referring to the case [I − Γ]− 1 > 0, standard results

of linear algebra lead to the following proposition which extends to the economy with expanding

varieties and technology levels a result, similar in spirit, of Eicher and Turnovsky (1999).
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Proposition 3.2.1: Assume Γ ≥ 0 and Trace ([I − Γ]) > 0. Assume also that, for each row, the row

sum of the elements of Γ  is positive and lower than 1. Then, for every n > 0, there exist positive

values gA, gN, gK that are solutions to (14)-(15)-(16) and such that gl = n − gN > 0.

Recalling that 0 < α < 1, a quick look at equation (18) will suffice to see that the following

holds:

Proposition 3.2.2: If, in addition to the assumptions of proposition 2.1, we have (γ + 1 − α) ≥ 0,

then gK > n (positive per-capita-output growth).

Remark 3.2.1: The if condition of proposition 3.2.2 amounts to the existence of increasing returns to
scale in the output sector. Proposition 3.2.1 requires instead that there are decreasing returns to
scale in extensive search and is consistent with decreasing, constant or increasing returns in intensive
search. In particular , the growth of  the productivity index A will be faster than population growth,
provided that θ is sufficiently large.

Thus, where the equations of system (19) are not linearly dependent (notably, a condition of

full measure in the relevant parameter space) the steady-state growth rates of output, technology

levels and varieties are completely determined by population growth and the technological

parameters. These rates are therefore independent of preferences, and of savings rates in particular.

The above propositions extend to a three-sector environment the formal characterisation of

the class of two-sector non-endogenous growth models first laid down by Eicher and Turnovsky

(1999). From a formal view point the seminal paper of Arrow (1962), where technology

accumulation is driven by learning rather than deliberate R&D investment, belongs to the same class.

Within the family of R&D growth models, the best-known non-endogenous example is probably

Jones (1995) (see also Jones (1998) and (2000)), where the author abstracts from the expansion of
varieties, so that gN = 0 and gl = n > 0. In particular, Jones (1995) assumes ξ  = 0 (no physical

capital input in R&D) and 0 < − χ < 1, so that his two-sector version of system (19) boils down to

−
− − −


















 =

−










χ
α α

θ
α

0

(1 ) (1 ) (1 )
A

K

g

g

n

n

and the conditions of propositions 2.1, 2.2 are trivially satisfied.

It may be worth observing how the steady-state relation gc = gA = (r − ρ) / σ continues to hold, but

the direction of causality at work here is such that, given n, technology determines gA and r is then

determined by gA and preferences. Instead, in the endogenous model with asymmetric cost of

innovation effort between extensive and intensive R&D we have that technology and preferences

simultaneously determine gA and r.
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4. Is n an upper bound for gN ?

As it turns out, the available examples of endogenous and non-endogenous R&D growth

models share the prediction that, in steady state, the expansion of varieties proceeds at a pace which

is not faster than the pace of population growth. In particular, gN* = n in the endogenous and gN* <

n in the non endogenous models considered above. On a closer examination, however, these

predictions are the by-product of quite special assumptions. Both the endogenous and the non-

endogenous model admit extensions such that gN* may be larger than n.

To see this, consider again system (19) under the simplifying restriction γ = α  − 1. In this

case, the third equation in (19 ) yields gK* = gA* + n. Since the matrix [I − Γ] reduces to

− −
− − − − −

− −

















χ ξ
ν τ ε ψ ψ

α α

0

1

(1 ) 0 1-

we have Det([I − Γ]) = −(ξ + χ) (1 − τ − ε −ψ)(1 − α).

We may consider a version of the endogenous model with χ = 0, ξ > 0, υ > 0, where the

crucial restriction Det([I − Γ]) = 0 is now fulfilled by τ + ε + ψ = 1. In this case

Ṅ / N = β zL
ε (L / N) ε Aυ

which in steady state requires ε (n − gN) + υ gA = 0. If 0 < υ < ε, this yields  gK = gA + n > gN. Since

from (16) gK = gN  − (θ / ξ)(n − gN) we conclude that  gN > n and gA > 0 are  consistent with a steady

state path.

In the non endogenous model with the matrix [I − Γ] as above, simple calculations reveal:

gN − n = n[(τ+ε+ψ−1)(ξ+χ)−υ(ε+ξ)]/[(1−τ)(ξ+χ)−(ξ+θ)(υ+ψ)]

gA = n[(τ+ε+ψ−1)(ξ+θ)]/[(1−τ)(ξ+χ)−(ξ+θ)(υ+ψ)]

Thus, a sufficient condition for a steady state with gN > n and gA > 0 is: τ < 1, τ + ε + ψ > 1; ξ + χ >

0, υ and ψ sufficiently close to zero.

5. Research employment and productivity

A second and deeper problem is posed to the R&D growth models by the dramatic long-

term rise of the researchers/employment ratio observed in the advanced countries and the U.S.A. in

particular, compared to the simultaneous performance of the growth rate of per-capita GDP and of
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productivity growth (moderately declining in the U.S. and more sharply declining in the other

advanced countries) in the period 1950 – 1995 (see Jones (2000)). The U.S. experience is not

influenced by the transient component of productivity growth in 1950-1970 which is generally

associated to technological catching-up. In the U.S. the performance of the growth rates of GDP per

hour and GDP per capita in the period 1950-1995 appears as relatively constant, if compared to the

simultaneous dramatic rise of the researchers/employment ratio. Hence we shall refer to a relative

constancy of the U.S. productivity growth in this period.

These stylised facts are not only at variance with the scale effect on the growth rate

displayed by the first generation of endogenous R&D growth models and criticised by Jones (1995).

The evidence is more generally at variance with the possibility to approximate (if at a very aggregate

level) the long term evolution of innovation activity and productivity growth in the U.S. (but also in

the advanced countries) through the hypothesis that this economy has been growing in the

neighbourhood of a single steady-state path. More specifically, endogenous and non-endogenous

models alike are faced with the problem of

(i) explaining how the rising researchers/employment ratio (1 − hL) can be reconciled with

the behaviour of productivity growth;

(ii) identifying the causes of the rising researchers/employment ratio.

A first way of answering these questions is to suppose that the rise in (1 − hL) corresponds

to a transition between different steady states induced by exogenous changes in one or more

technological and/or preference parameters.

A second and more ambitious way is much in the spirit of Pasinetti (1981) and searches for

rules of structural change that may get closer to explain the observed phenomena and above all the

finding that growth trajectories are not well approximated by a steady state path. In the remainder

of this paper we shall expand on these two lines of investigation.

To this end, we shall refer to the simplified versions of system (19) that feature in ‘standard

examples’ of endogenous and non-endogenous R&D growth models. In particular, physical capital
is not an input to innovation activity, intensive and extensive, hence ξ = 0, ψ = 0; the productivity

of the extensive innovation effort does not depend on  the technology level A, that is, υ = 0; the

aggregate production function does not depend on the number of varieties N, thus γ = α − 1.

5.1 Looking for appropriate parameter changes

Referring to the U. S. experience in the second half of the twentieth century, we may observe

how the rate of interest, the capital output ratio, and the growth rate of per capita GDP have been
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‘relatively constant’11 over the period. Since the model structure described above implies σ gA + ρ =

r = α2K/Y, we derive the restriction that α  has been constant; we are also led to formulate the

working hypothesis that the preference parameters σ and ρ were unchanged throughout. With this

situation in mind we consider what, if any, changes of the technological parameters of the non

endogenous and endogenous models can answer the issues posed under (i) and (ii) above.

5.1.1 Non-endogenous model

With the assumptions of proposition 3.2.1 in place, in particular 0 < −χ < 1, ε + τ < 1 the

non endogenous model yields the steady-state predictions:

gY = gA + n

gN = ε n / (1 − τ)

gA = θ ( 1 − τ − ε) n / − χ (1 − τ)

Notice that ∂ gA / ∂ τ < 0; ∂ gA / ∂ χ > 0. Moreover, the growth rate of per capita output is

independent of δ, the proportional productivity effect of quality innovations; it is also independent

of λ and β, the parameters that, for any given innovation effort, regulate the arrival rates of intensive

and extensive innovations, respectively. Using the condition that, in equilibrium the agent is

indifferent between investing one extra unit of labour effort in intensive research, extensive research

or output production, we derive the steady state value of (uL + zL).

(uL + zL)−1 = 1 + 
θ τ ε σδ χδ ρ τ ε ρε

δ τ ε αθ χδεα
n n

n n

( )( ) [( )( ) ]
( )( )

1 1 1
1 1

− − + − − − − +
+ − − −

We may observe how λ  and β do not affect the steady-state researchers/employment ratio.

Moreover, simple but tedious calculations reveal:

∂(uL + zL)/∂δ < 0 if σ ≥ 1

∂(uL + zL)/∂χ > 0 if σ ≤ 1

∂(uL + zL)/∂τ > 0 if σ ≤ 1

Depending on the preference parameters, the model produces two candidate explanations for
the observed long term rise of the researchers/employmant ratio: either a fall of δ, leaving gA

unaffected, and/or concomitant increases of χ and τ, both raising the share (uL + zL), while exerting

mutually compensating effects on gA. The two types of parameter changes would produce

qualitatively similar effects on the composition of research employment.

11 At least in the sense specified in the introduction to this paper.
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zL / uL = −χεδ / [(1−τ−ε)θ(1+δ)]

Since ∂( zL / uL) / ∂δ > 0 and −χ / (1−τ−ε) is bound to fall if gA  is to remain constant in the

face of rising χ and τ, the model predicts that the above changes in parameters would be associated

to a falling ratio of the extensive research relative to the intensive research employment.

Consider, for instance, the case σ ≥ 1 and a drastic fall in δ, the productivity effect of a

quality innovation. The model predicts that this change would not produce long-term consequences

on the growth rate of output per capita, because it would be perfectly offset in its effect on gA by

the concomitant rise of the labour share employed in intensive R&D, and also of the ratio uL / zL.

Whether or not this particular prediction is consistent with the evidence is hard to say, because the

theoretical distinction between intensive and extensive search is not one with a clear empirical

counterpart and we do not have data on the distribution of research employment between these

types of activity. Notably, however, a drastic fall of the productivity impact of innovations is what

authors such R. Gordon have in mind when they observe that the information-communication

technology of the present days is far from producing productivity effects or, effects on well being,

even remotely comparable to those of the second industrial revolution.

Still, there seems to be more in the observed long-term rise of (uL + zL) and the simultaneous

long-term constancy of gA, than the model can explain. We shall offer a possible line of explanation

in section 5.2.

5.1.2 Endogenous model

In addition to the simplifying assumptions stated at the outset of section 5.1, the
endogenous model we are considering assumes χ  = 0,  ε + τ  = 1 and θ = ε. The innovation

technology is that considered in section 3.1.1 generating a symmetric cost from one additional unit

of labour effort across extensive and intensive innovations. The fact that with this technology the

steady state growth rate does not depend upon preferences is unconsequential here, because the
present exercise is conducted under the ‘working hypothesis’ that the preference parameters ρ and

σ and the technological parameter α are unchanged. In steady-state equilibrium, the growth rate of

per capita output is:

gA =  δ n [(1 + δ)θ  λ   β− 1] 1 / (1 − θ)

The research employment shares are:
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It can be easily checked that

∂ uL / ∂ (λ/β) > 0

∂ zL / ∂ (λ/β) < 0

∂ (uL + zL) / ∂ (λ/β) < 0 and ∂ (uL + zL) / ∂ δ < 0  if σ > [(1 + δ)ρ − n] / δn

∂ (uL + zL) / ∂ (λ/β) > 0 and ∂ (uL + zL) / ∂ δ > 0  if σ ≤ 1.

Thus, under the  ‘working hypothesis’ specified above  the model can not be easily

reconciled with the drastic rise of (uL + zL) and the simultaneous approximate constancy of gA. The
reason is that for a wide range of the preference parameter σ, the technological parameters δ and λ/β
affect (uL + zL) and gA in the same direction. (In the remaining range 1 < σ ≤ [(1 + δ)ρ − n] / δn the

results are ambiguous.)

5.2 Growth and structural change

In section 5.1 the long run rise of the research-employment share in the advanced countries

was interpreted as the outcome of a sequence of transitions between different steady states induced

by a change in one , or more, technological parameter. With this interpretation in mind and the

formal structure outlined above, one can conclude that the non-endogenous model can be more easily

reconciled with the evidence. In particular, a parametric fall in the productivity effect of quality

innovations has no effect on the steady-state value of productivity growth and increases the steady-

state share of research-employment.

If this explanation contains probably a grain of truth, it has at least two shortcomings. In the
first place, the required change of δ that is necessary to bear the weight of the dramatic long-term

rise of (uL + zL) may be unplausibly large; in the second place, the explanation is only partial, in that

it rests on exogenous parameter changes. The convenient interpretation of growth paths as steady

states, which is so dominant in growth theory generally, and growth theory of neoclassical
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inspiration in particular, becomes a strait-jacket when it comes to interpret phenomena such as the

long-term rise of (uL + zL). In this respect, R&D models have paid mostly lip service to the lesson

of eminent scholars on economic development, such as Adam Smith, Allyn Young, Joseph

Schumpeter and Simon Kuznets. Their idea that there are deep reasons why growth is

systematically associated with structural change is not easily reconciled with a model structure

which is deliberately designed in order to obtain the steady-state property.

A recent change in this state of affairs is a paper by Sergio Rebelo and co-authors

(Kongsamut, Rebelo and Xie (2000))  showing that the new growth theory has eventually placed

structural change on its research agenda. In the focus of that paper is the long term shift away from

agriculture and next from manufacturing to services, which is so typically associated with the

process of economic growth. Clearly, these changes have at least in part to do with changes in the

composition of consumers’ expenditure associated with the long term rise of per-capita income. A

tradition in economic theory, from Kuznets (1957) to Pasinetti (1981) had already emphasized this

order of phenomena.

One may ask whether the observed long term rise of the research-employment share may be

similarly associated with the long-term rise of per capita income through its effects on the

composition of consumer’s expenditure. A possible line of explanation is the following. Consider a

non-endogenous R&D model of economic growth with differentiated consumer goods, and only one

intermediate good, which is used, together with labour, to produce every consumption good i with

the production function:

 Yt = At Ly(i),t
1 − α xt

α

At is the productivity index associated with the best-practice quality of the intermediate good at t.

Suppose that the rise of per-capita income makes consumers increasingly inclined to pay

attention to the birth date of a good, even when its service characteristics are close to those of the

old goods. That is, the rise of per-capita income produces a form of satiation with respect to the

‘old’ goods which loose market shares in favour of the ‘new’ goods. The expected pay-off from the

research effort to create a new consumption good would be influenced by the rising per-capita

income in at least two ways. Ceteris paribus, the new good would enjoy a larger market share in the

period immediately following its first introduction. At the same time, the rising per capita income

would produce a faster economic obsolescence, that is, a more rapidly declining market share, during

the economic life of this good. Assume conditions such that the first effect prevails and  the

outcome is a long-term rise of the expected pay-off from the creation of a new consumption good,

relative to creation of a quality innovation. In equilibrium, the ratio zL / uL between the extensive and

the intensive R&D employment would increase with per capita income to make the return of one

additional unit of labour effort identical in the two activities. Thus, equilibrium paths with a long
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term rise of the research-employment share may well be consistent with a constant growth of the

productivity index A.

In the remainder of this section we would like to sketch a second line of explanation which is

more easily related to the formal structure outlined in the previous sections. The explanation rests

upon the problem of complementarity between intermediate goods. In the new-growth literature,

the problem of complementarity between intermediate goods has been introduced in relation to the

idea of a sequence of general-purpose technologies (GPTs). The adoption of a GPT requires the

previous creation of a set of intermediate goods that are specific to it. When the GPT s first appears

a labour share is shifted from manufacturing to R&D (phase 1); next, after the intermediate goods

required by s have been invented all employment is shifted to manufacturing until the GPT (s + 1)

arrives (phase 2). The idea is exploited by Helpman and Trajtenberg (1994) and Aghion and Howitt

(1998) to study the relation between growth and cycles. The notion of a steady state is

correspondingly extended by these authors  to the effect that in an economy with a constant

population “a steady-state equilibrium is one in which people choose to do the same amount of

research each time the economy is in phase 1 …” (Aghion and Howitt (1998), p. 248).

We suggest that a similar set of ideas can be conducive to phenomena of structural change

within a framework which is borrowed, with some important variations or qualifications, from the

R&D growth models considered in this paper.

For the sake of simplicity, let us assume away the problem of extensive R&D by assuming
that at every date there is an unchanging continuum of intermediate-good varieties ordered on ℜ +; to

employ these varieties in production, their appropriate technology level must developed. [0, ΛA] is

the set of complementary intermediate-good inputs necessary to implement the technology level A

in the production of final output. Nt is the number of intermediate goods used at t. There is only one

final good Y. Its production function is:

Yt = Nt
α  − 1 LY,t

1 − α [ ∫
∞

=0v
P(Av, t) xv ,t

α ∂v] (41)

P(Av, t) is the productivity index associated to the technology level Av, t  of variety v. with:

P(Av, t) = A, if 0 ≤ v ≤ ΛA and Av, t = Aj, t = A for all v, j ∈  [0,  ΛA];

P(Av, t) = 0 otherwise.

The above assumption formalises a strong form of incompatibility between intermediate goods of a

different technology level. We say that technology level A has been implemented if Av, t = Aj, t = A
for all v, j ∈  [0,  ΛA]. Variety v is necessary to the implementation of A if and only if v ∈  [0,  ΛA].
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If technology level A(t) is implemented at time t, there is an instantaneous knowledge
spillover such that Av, t  = A(t) for every v ∈  [0, ∞]. The implementation of a higher technology

level is instead costly, because it requires the higher level is independently developed for every
necessary variety as the result of a deliberate R&D effort. The number φv, t of intensive innovations

in sector v at t evolves according to the deterministic process:

φv, t = λ (uL, v, t Lt)
θ Av, t 

χ (42)

If every innovation has a proportional effect δ on the technology level Av, t, we obtain:

˙
,Av t  = δ λ (uL, t Lt / Nt)

θ Av, t
 χ + 1 (43)

Higher technology level are of higher complexity and their implementation requires a larger

number of necessary intermediate inputs. Assume that the number of necessary varieties evolves

according to:

ΛA(t) =  At
η η > 0 (44)

This implies that, if gΛ(t) is the proportional growth rate of ΛA(t) at time t, then:

gΛ(t) =  η gA(t) (45)

It goes without saying that the strong complementarities of the form we have described

imply that the market implementation of a higher technology level will face a host of co-ordination

problems. Here we are not concerned with this feature, however important it may be. Our aim is

simply to show that equilibrium paths on which the productivity index At grows at a constant rate

gA > 0 are not steady state paths and have a rising share uL of R&D employment.

In the equilibrium at time t we have Nt = ΛA(t) . With gA constant, from (43) and (45) we

obtain:

 − χ  gA = θ (n + 
˙ ,

,

u

u
L t

L t

 − gΛ(t)) (46)

hence:

[η − χ] gA = θ (n + 
˙ ,

,

u

u
L t

L t

 ) (47)

Recalling that the ‘congestion effect’ in R&D implies θ < 1, and that our considerations

suggest χ < 0,  it is easy to see how, given n, the higher η , the higher the growth rate 
˙ ,

,

u

u
L t

L t

required

to elicit a given productivity growth gA . Thus, with η  sufficiently large, the value gA ≈ 0.02
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prevailing in the period 1950-1995 would not have been possible in the  presence of a constant

labour share in R&D.

Notice how the above specification implies that productivity growth can be only
temporarily sustained beyond its steady state level θn / (η−χ). The identification of the market and

non-market mechanisms which can temporarily sustain a rising share of R&D employment is left to

future work.
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